
2

Goals of this course

• What is software security ?
 Understanding the role that software plays

– in providing security
– as source of insecurity

• Principles, methods & technologies to make
software more secure
– incl. practical experience with some of these

• Typical threats & vulnerabilities that make
software less secure, and how to avoid them

danielefriolo
Evidenziato

Motivation

8

Quiz

 What do web-sites, web-browsers, operating
systems, wifi access points, network routers,
mobile phones, PDAs, smartcards, firewalls,
intrusion detection systems, and video-
conferencing equipment have in common?

 SOFTWARE!

 Why can all these things be hacked, if we are not
 very careful?

9

Why a course on software security?

• Software plays a major role in providing security,
and is a major source of security problems.
– Software is the weakest link in the security chain, with

the possible exception of “the human factor”

• Software security does not get much attention
– in other security courses, or
– in programming courses,

 or indeed, in much of the security literature!

10

We focus on software security, but don’t forget
that security is about, in no particular order,
 people (users, employees, sys-admins, programmers,...),
 access control, passwords, biometrics, cryptology, protocols,
 policies & their enforcement, monitoring, auditing,
 legislation, persecution, liability, risk management,
 incompetence, confusion, lethargy, stupidity, mistakes,
 complexity, software, bugs, verification, hackers, viruses,
 hardware, operating systems, networks, databases,
 public relations, public perception, conventions, standards,
 physical protection, data protection, ...

11

Software may well be the weakest link in the
security chain, but
 “it may also be argued that this chain is hidden in a

mud pie: it is hard to find the links, to figure out
if they hang together, or if anyone notices or
cares if it’s removed altogether:

 …the mud pie will still be there…” [Arjen Lenstra]

The problem

danielefriolo
Evidenziato

13

Internet worms and viruses

• virus = harmful piece of code that can infect other
programs

• worm = self-replicating virus; no user action
required for spreading infection

• First worm: Nov 1988, crashed 10% of internet
• More recently

– email viruses: I Love You, Kounikova, ...
– Worms: Slammer, Blaster, ...

• More recently still: attackers have gone
underground & commercial

danielefriolo
Evidenziato

14

Slammer Worm (Jan 2002)

Pictures taken from The Spread of the Sapphire/Slammer Worm, by David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford,
Nicholas Weaver

danielefriolo
Evidenziato

15

Slammer Worm (Jan 2002)

Pictures taken from The Spread of the Sapphire/Slammer Worm, by David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford,
Nicholas Weaver

danielefriolo
Evidenziato

17

Vulnerability in Cisco Router (source US-CERT)

Published: 2011-01-24
Vulnerability No: CVE-2011-0352
CVSS Severity Score: 7.88
Vendor/Product cisco -- linksys_wrt54gc_router_firmware

 Buffer overflow in the web-based management interface on

the Cisco Linksys WRT54GC router with firmware before
1.06.1 allows remote attackers to cause a denial of service
(device crash) via a long string in a POST request.

danielefriolo
Evidenziato

18

Vulnerability in FFmpeg (source US-CERT)

Published: 2011-01-24
Vulnerability No: CVE-2010-4705
CVSS Severity Score: 9.3
Vendor/Product: ffmpeg -- ffmpeg

 Integer overflow in the vorbis_residue_decode_internal

function in libavcodec/vorbis_dec.c in the Vorbis decoder in
FFmpeg, possibly 0.6, has unspecified impact and remote
attack vectors, related to the sizes of certain integer data
types. NOTE: this might overlap CVE-2011-0480.

19

Vulnerability in Linux/Windows/MACOS

Published: 2011-01-24
Vulnerability : CVE-2011-0638 CVE-2011-0640 CVE-2011-0639
CVSS Severity Score: 9.3
Vendor/Product: Apple Mac OS X
 Microsoft - windows
 Linux - Linux kernel

 Microsoft Windows /Mac OS X/ Linux does not properly

warn the user before enabling additional Human Interface
Device (HID) functionality over USB, which allows user-
assisted attackers to execute arbitrary programs via
crafted USB data, as demonstrated by keyboard and mouse
data sent by malware on a smartphone that the user
connected to the computer.

danielefriolo
Evidenziato

20

Vulnerability in Mozilla/Bugzilla

Published: 2011-01-28
Vulnerability : CVE-2010-4568
CVSS Severity Score: 7.5
Vendor/Product: Mozilla - Bugzilla

 Bugzilla 2.14 through 2.22.7; 3.0.x, 3.1.x, and 3.2.x before

3.2.10; 3.4.x before 3.4.10; 3.6.x before 3.6.4; and 4.0.x
before 4.0rc2 does not properly generate random values for
cookies and tokens, which allows remote attackers to obtain
access to arbitrary accounts via unspecified vectors, related
to an insufficient number of calls to the srand function

21

Vulnerability in Tandberg videoconferencing

Published: Feb 2 2011
Vulnerability : CVE-2011-0354
Vendor/Product: Tandberg- video conferencing

 TANDBERG Videoconferencing Systems Default Account

Lets Remote Users Gain Root Access

 The device includes a root administrator account with no

password. A remote user can access the system with root
privileges.

The root user account is used for advanced debugging and is
not required for normal operations.

danielefriolo
Evidenziato

22

Mini-assignment for coming week

To get an impression of the problem, have a look at

 http://www.securityfocus.com/vulnerabilities
 http://www.us-cert.gov/cas/bulletins
 http://www.securitytracker.com/

Links are on the course webpage

Superficial analysis of the problem

24

Observation 1

All these problems are due to (bad) software

Namely
• the Linux/Windows/Mac Operating System (OS)
• the router software
• the videoconferencing system software
• the FFmeg graphics engine
• ...

 Such software bugs are why constant patching of
system is needed to keep them secure

danielefriolo
Evidenziato

25

Observation 2

All these problems are due to (bad) software that
• can be executed over the network, or

– eg. in case of Slammer worm
• executes on (untrusted) input obtained over the

network
– eg. in case of FFmpeg

With ever more network connectivity, ever more
software can be attacked.

danielefriolo
Evidenziato

26

Rise of web application (in)security

• Traditionally, focus on operating system and
network security
– regular patching of OS
– firewalls, virus scanners

• Increasingly, web applications and web browser
are weak link and obvious targets to attack

Also mobile devices and embedded software are targeted.
• Traditional distinction between OS, network, and application

gradually disappearing anyway:
– OS-like functionality in programming platforms such as Java

and .NET
– webbrowser as the OS of the future ?

danielefriolo
Evidenziato

Changing nature of attackers

• Traditionally, hackers are amateurs motivated by fun

• publishing attacks for the prestige

• Increasingly, hackers are professional

• attackers go underground

• zero-day exploits are worth money

• attackers include

• organized crime
with lots of money and (hired) expertise

• government agencies:
with even more money & in-house expertise

‘Classic’ example: Stuxnet
http://www.ted.com/talks/ralph_langner_cracking_stuxnet_a_21st_century_cyberweapon.html

danielefriolo
Evidenziato

Current prices for 0days

The causes of the problem

danielefriolo
Evidenziato

28

Quick audience polls

• how many of you learned to program in C or C++?

• how many of you have built a web-application?
– in which languages?

Major causes of problems are
• lack of awareness
• lack of knowledge

standard
Sticky Note
irresponsible use and teaching of dangerous programming languages

29

1. Security is secondary concern

• Security is always a secondary concern
– primary goal of software is to provide some

functionality or services; managing associated
risks is a derived/secondary concern

• There is often a trade-off/conflict between
– security
– functionality & convenience

 where security typically looses out
• more examples of this later...

danielefriolo
Evidenziato

31

Functionality vs security

• Functionality is about what an application does,
 security is about what an application should not do

 Unless you think like an attacker, you will be
unaware of any potential threats

danielefriolo
Evidenziato

58

Functionality vs security

Lost battles?
• operating systems

– huge OS, with huge attack surface (API),
• programming languages

– buffer overflows, format strings, ... in C
– public fields in Java
– ...

• web browsers
– plug-ins for various formats, javascript, ajax, VBscript, ...

• email clients

danielefriolo
Evidenziato

59

Functionality vs security : PHP

 "After writing PHP forum software for three years
now, I've come to the conclusion that it is basically
impossible for normal programmers to write
secure PHP code. It takes far too much effort.
PHP's raison d'etre is that it is simple to pick up
and make it do something useful. There needs to
be a major push ... to make it safe for the likely
level of programmers - newbies. Newbies have
zero chance of writing secure software unless
their language is safe. ... "

 [Source http://www.greebo.cnet/?p=320]

60

First steps in improving software security

• awareness
– that there might be a problem
– of what needs protecting, from which threats
– of the fact that you might lack knowledge

danielefriolo
Evidenziato

32

 programming languages

2. Weakness in depth

hardware (incl network card & peripherals)

application

operating system

webbrowser
with plugins platform

eg Java or .NET

system APIs

middleware

libraries

interpretable or executable input data
eg paths, filenames, .doc, .xls, .pdf, .js,...

sql
data
base

danielefriolo
Evidenziato

33

2. Weakness in depth

Software
• runs on a huge, complicated infrastructure

– OS, platforms, webbrowser, lots of libraries & APIs, ...
• is built using complicated languages

– programming languages, but also SQL, HTML, XML, ...
• using various tools

– compilers, IDEs, preprocessors, dynamic code downloads

These may have security holes, and may make the
introduction of security holes very easy & likely

danielefriolo
Evidenziato

34

3. Unfair battle

The fight against hackers in unfair:
 the attacker only has to get lucky once,
 the defender has to get it right all the time

(cf. football)

35

Recap

Problems are due to
• lack of awareness

– of threats, but also of what should be protected
• lack of knowledge

– of potential security problems, but also of solutions
• compounded by complexity

– software written in complicated languages, using large
APIs , and running on huge infrastructure

• people choosing functionality over security

danielefriolo
Evidenziato

Flaw or Vulnerability ?
Confusing terminology
Security weakness, flaw, vulnerability, bug, error, coding
defect …
Important distinction
1.Security weakness / flaw

Something that is wrong or could be better ...

2.Security vulnerability
Flaw that can be exploited by an attacker to violate a policy

So, a flaw must be
•Accessible: an attacker must have access to it
•Exploitable: an attacker must be able to use it to compromise system

danielefriolo
Evidenziato

56

Typical software security vulnerabilities

Security bugs found in Microsoft bug fix month (2002)

37%

20%

26%

17%
0%

buffer overflow
input validation
code defect
design defect
crypto

danielefriolo
Evidenziato

Software Flaws
Software flaws can be introduced at two levels
1) Design flaw – the flaw is introduced during the design
2) Bug / code-level flaw - the flaw is introduced during
implementation

Equally common

Vulnerabilities can also arise from other levels
• Configuration flaws – when installing the SW
• “User” flaws
• Unforeseen consequences of intended functionality (e.g., spam …)

danielefriolo
Evidenziato

Coding Flaws
Software flaws can be introduced during
implementation can be roughly distinguished into

1) Flaws that can be understood by looking at the program
e.g.; typos, confusing program variables, off-by-one, access to
array, error in program logic, …

2) Flaws due to the interaction with the underlying
platform or with other systems

o Buffer overflow in C(++) code
o Integer overflow/underflow in most programming languages
o SQL injection, XSS, CSRF, … in web applications

danielefriolo
Evidenziato

Spot the security flaws
int balance;

void decrease(int amount)

{ if (balance <= amount)

{ balance = balance – amount; }

else { printf(“Insufficient funds\n”); }

}

void increase(int amount)

{ balance = balance + amount;

}

Spot the security Flaws
int balance;

void decrease(int amount)

{ if (balance <= amount)

{ balance = balance – amount; }

else { printf(“Insufficient funds\n”); }

}

void increase(int amount)

{ balance = balance + amount;

}

should be >=

what if
amount is
negative?

what if the sum is too
large for an int ?

danielefriolo
Evidenziato

Different implementation Flaws

should be >)

what if amount
is negative?

what if the sum is too
large for a 64 bit int ?

1. Logic error
Can be found by code inspection only

2. Lack of input validation of
(untrusted) user
Design flaw or implementation flaw ?

3. Problem with interaction with
underlying platform.
lower level than previous ones

danielefriolo
Evidenziato

tackling software insecurity
• To prevent standard mistakes, knowledge is

crucial
• mistakes may depend on the programming language,

on the platform (Op.Sys., DB, Web app, ...) and on the
(type of) application

• but knowledge alone is not enough: security must
be taken into account from the beginning and
throughout the software development life cycle

danielefriolo
Evidenziato

Evolution in tackling software security
Organizations tackle security at the end of the SDLC and
with time have moved the concern to earlier stages
for example, chronologically:
1) First, do nothing

• Some problem may happen and then we patch
2) then implement support for regular patching
3) Products are pen-tested pre-emptively
4) Use static analysis tools on code produced
5) then train programmers to know about common problems
6) then think about abuse cases and develop security test
for them
7) then start thinking about security before starting the
development

danielefriolo
Evidenziato

Security in software development
life cycle

G.McGraw’s Touchpoints

danielefriolo
Evidenziato

Security concepts & goals

danielefriolo
Evidenziato

37

Software and Security

• Security is about regulating access to assets
– eg. information or functionality

• Software provides functionality
– eg on-line exam results

• This functionality comes with certain risks
– eg what are risks of on-line exam results?

• Software security is about managing these risks

danielefriolo
Evidenziato

38

Security concepts

owners

attackers

countermeasures

risks

availability/
usefulness

assets

vulnerabilities

threats

want to maximise

of

to

want to minimise
impose

increase

want to abuse

 give
rise to

may have

require

exploit

increase

lead to

reduce

danielefriolo
Evidenziato

39

Starting point for ensuring security

• Any discussion of security should start with an
inventory of
– the stakeholders,
– their assets, and
– the threats to these assets

 by possible attackers
– employees, clients, script kiddies, criminals

• Any discussion of security without understanding
these issues is meaningless

danielefriolo
Evidenziato

40

Security concepts

• Security is about imposing countermeasures to
reduce risks to assets to acceptable levels

• A security policy is a specification of what
security requirements/goals the countermeasures
are intended to achieve
– secure against what and from whom ?

• Security mechanisms to enforce the policy

• Bottlenecks:
– expressing what we (don't) want in a policy
– enforcing this, dynamically or statically

danielefriolo
Evidenziato

41

Security Objectives: CIA

• Confidentiality
– unauthorised users cannot read information

• Integrity
– unauthorised users cannot alter information

• Availability
– authorised users can access information

• Non-repudiation for accountability

– authorised users cannot deny actions

danielefriolo
Evidenziato

42

Security objectives

• Integrity nearly always more important than
confidentiality

 Eg think of
– your bank account information
– your medical records
– all your software, incl. entire OS

• Availability may be undesirable for privacy
– you want certain data to be or become unavailable

danielefriolo
Evidenziato

43

Security goals

The well-known trio
• confidentiality, integrity, authentication (CIA)
but there are more “concrete” goals
• traceability and auditing (forensics)
• monitoring (real-time auditing)
• multi-level security
• privacy & anonymity
• ...
and meta-property
• assurance – that the goals are met

danielefriolo
Evidenziato

44

How to realise security objectives? AAAA

• Authentication
– who are you?

• Access control/Authorisation
– control who is allowed to do what
– this requires a specification of who is allowed

to do what
• Auditing

– check if anything went wrong
• Action

– if so, take action

danielefriolo
Evidenziato

45

How to realise security objectives?

Other names for the last three A's
• Prevention

– measures to stop breaches of security goals
• Detection

– measures to detect breaches of security goals
• Reaction

– measures to recover assets, repair damage, and
persecute (and deter) offenders

NB don't be tempted into thinking that good prevention makes
detection & reaction superfluous.

Eg. breaking into any house with windows is trivial; despite this absence of
prevention, detection & reaction still deter burglars.

danielefriolo
Evidenziato

46

Threats vs security requirements

• information disclosure
– confidentiality

• tampering with information
– integrity

• denial-of-service (DoS)
– availability

• spoofing
– authentication

• unauthorised access
– access control

danielefriolo
Evidenziato

47

Countermeasures

• Countermeasures can be non-IT related
– physical security of building
– screening of personnel
– legal framework to deter criminals
– police to catch criminals
– ...

 but we won’t consider these

danielefriolo
Evidenziato

48

Countermeasures and more vulnerabilities

Countermeasures can lead to new vulnerabilities
• eg. if we only allow three incorrect logins, as a

countermeasure to brute-force password guessing attacks,
which new vulnerability do we introduce?

If a countermeasure relies on software,
bugs in this software may mean
• that it is ineffective, or
• worse still, that it introduces more weaknesses

Software security

danielefriolo
Evidenziato

50

Two sides to software security: do’s & dont’s

• What are the methods and technologies,
 available to us if we want to provide security?

– security in the software development lifecycle
– engineering & design principles
– security technologies

• What are the methods and technologies available
to the enemy who wants to break security ?

 ie. what are the threats and vulnerabilities we’re
up against

danielefriolo
Evidenziato

51

Security in Software Development Life Cycle

[Source: Gary McGraw, Software security, Security & Privacy Magazine,
IEEE, Vol 2, No. 2, pp. 80-83, 2004.]

52

Security technologies we can use

• cryptography
– for threats related to insecure communication and

storage
 (Probably adequately covered in other courses?)
• access control

– for threats related to misbehaving users
• eg role-based access control

• language-based security
– for threats related to misbehaving programs

• typing, memory-safety
• sandboxing

– eg Java, .NET/C#

danielefriolo
Evidenziato

53

Security technologies

• Security technologies may be provided by the
infrastructure/platform an application builds on, for
instance
– networking infrastructure

• which may eg. use SSL
– operating system or database system

• providing eg. access control
– programming platform

• for instance Java or .NET sandboxing

• Of course, software in such infrastuctures implementing
security has to be secure

danielefriolo
Evidenziato

54

Software infrastructure

Applications are built on top of "infrastructure" consisting of
• operating system
• programming language/platform/middleware

– programming language itself
• interface to CPU & RAM

– libraries and APIs
• interface to peripherals
• provider of building blocks

• other applications & utilities
– eg database

This infrastructure provides security mechanisms,
but is also a source of insecurity

danielefriolo
Evidenziato

55

Threats & vulnerabilities

• Knowledge about threats & vulnerabilities crucial

• Vulnerabilities can be specific to programming language,
operating system, database, the type of application... and are
continuously evolving
– we cannot hope to cover all vulnerabilities in this course

• “Fortunately”, people keep making the same mistakes
 and some old favourites never seem to die,

– esp. public enemy number 1: the buffer overflow
 and some patterns keep re-emerging

57

Sources of software vulnerabilities

• Bugs in the application or its infrastructure
– ie. doesn't do what it should do

• Inappropriate features in the infrastructure
– ie. does something that it shouldn't do

• functionality winning over security
• Inappropriate use of features provided by the

infrastructure.
 Main causes

– complexity of these features
• functionality winning over security, again

– ignorance of developers

danielefriolo
Evidenziato

61

Topics in rest of this course

• Awareness & knowledge of vulnerabilities (don'ts)
– general (input validation, ...)
– specific to a kind of application (SQL injection, XSS, ...), or
– specific to a kind of programming language (buffer overflows, ...)

• Awareness & knowledge of countermeasures (do's)
 at different points in the development lifecycle
 at level of application, programming language, or platform
 Eg security technologies (static or dynamic) such as

– access control
– untrusted code security

• type-safe languages, sandboxing, code-based access control
– runtime monitoring
– program analyses: typing, static analysis, verification,

information flow
 But beware that security software ≠ software security

danielefriolo
Evidenziato

