
2

Essence of the problem

Suppose in a C program we have an array of length 4

 char buffer[4];

What happens if we execute the statement below ?

 buffer[4] = ‘a’;

Anything can happen !

 If the data written (ie. the “a”) is user input that
can be controlled by an attacker, this vulnerability
can be exploited: anything that the attacker wants
can happen.

3

Solution to this problem

• Check array bounds at runtime
– Algol 60 proposed this back in 1960!

• Unfortunately, C and C++ have not adopted this
solution, for efficiency reasons.

 (Ada, Perl, Python, Java, C#, and even Visual Basic have.)(

• As a result, buffer overflows have been the no 1
security problem in software ever since.

4

Problems caused by buffer overflows

• The first Internet worm, and all subsequent ones (CodeRed,
Blaster, ...), exploited buffer overflows

• Buffer overflows cause in the order of 50% of all security
alerts
– Eg check out CERT, cve.mitre.org, or bugtraq

• Trends

– Attacks are getting cleverer

• defeating ever more clever countermeasures

– Attacks are getting easier to do, by script kiddies

5

Any C(++) code acting on untrusted input is at risk

Eg
• code taking input over untrusted network

– eg. sendmail, web browser, wireless network driver,...

• code taking input from untrusted user on multi-
user system,
– esp. services running with high privileges (as ROOT on

Unix/Linux, as SYSTEM on Windows)o

• code acting on untrusted files
– that have been downloaded or emailed

• also embedded software, eg. in devices with (wireless)
network connection such as mobile phones with Bluetooth,
wireless smartcards, airplane navigation systems, ...

How does buffer overflow work?

7

Memory management in C/C++

• Program responsible for its memory management
• Memory management is very error-prone

– Who here has had a C(++) program crash with a
segmentation fault?

• Typical bugs:
– Writing past the bound of an array
– Dangling pointers

• missing initialisation, bad pointer arithmetic, incorrect de-
allocation, double de-allocation, failed allocation, ...

– Memory leaks

• For efficiency, these bugs are not detected at run
time, as discussed before:
– behaviour of a buggy program is undefined

8

Process memory layout

Arguments/ Environment

Stack

Unused Memory

Heap (dynamic data)H

Static Data

Program Code .text
Low
addresses

High
addresses

Stack grows
down,
by procedure
calls

Heap grows
up,
eg. by malloc
and new.data

9

Stack overflow

 The stack consists of Activation Records:

AR main()m

AR f()f

Stack grows
downwards

void f(int x) {
 char[8] buf;
 gets(buf);
}
void main() {

 f(…); …
}
void format_hard_disk(){…}

x

return address

buf[4..7]

buf[0..3]

Buffer grows
upwards

10

Stack overflow

 What if gets() reads more than 8 bytes ?

AR main()m

AR f()f

void f(int x) {
 char[8] buf;
 gets(buf);
}
void main() {

 f(…); …
}
void format_hard_disk(){…}

x

return address

buf[4..7]

buf[0..3]

Buffer grows
upwards

11

Stack overflow

 What if gets() reads more than 8 bytes ?

AR main()m

AR f()f

Stack grows
downwards

void f(int x) {
 char[8] buf;

 gets(buf);
}
void main() {

 f(…); …
}
void format_hard_disk(){…}

x

return address

buf[4..7]

buf[0..3]

Buffer grows
upwards

never use

gets()!

12

Stack overflow

• Lots of details to get right:
– No nulls in (character-)strings
– Filling in the correct return address:

• Fake return address must be precisely positioned
• Attacker might not know the address of his own

string
– Other overwritten data must not be used before return

from function

– …

13

Variants & causes

• Stack overflow is overflow of a buffer allocated on the
stack

• Heap overflow idem, of buffer allocated on the heap

Common causes:

• poor programming with of arrays and strings

– esp. library functions for null-terminated strings

• problems with format strings

But other low-level coding defects than can result in buffer
overflows, eg integer overflows or data races

What causes buffer overflows?

15

Example: gets

 char buf[20];
 gets(buf); // read user input until

 // first EoL or EoF character

• Never use gets

• Use fgets(buf, size, stdin) instead

16

Example: strcpy

 char dest[20];
 strcpy(dest, src); // copies string src to dest

• strcpy assumes dest is long enough ,

 and assumes src is null-terminated

• Use strncpy(dest, src, size) instead

17

Spot the defect! (1)S

char buf[20];

char prefix[] = ”http://”;

...

strcpy(buf, prefix);

 // copies the string prefix to buf

strncat(buf, path, sizeof(buf));

 // concatenates path to the string buf

18

Spot the defect! (1)S

char buf[20];

char prefix[] = ”http://”;

...

strcpy(buf, prefix);

 // copies the string prefix to buf

strncat(buf, path, sizeof(buf));

 // concatenates path to the string buf

Another common mistake is giving sizeof(path) as 3rd argument...

strncat’s 3rd parameter is number
of chars to copy, not the buffer size

19

Spot the defect! (2)S

 char src[9];
 char dest[9];

 char base_url = ”www.ru.nl”;

 strncpy(src, base_url, 9);

 // copies base_url to src

 strcpy(dest, src);

 // copies src to dest

20

Spot the defect! (2)S

 char src[9];
 char dest[9];

 char base_url = ”www.ru.nl/”;

 strncpy(src, base_url, 9);

 // copies base_url to src

 strcpy(dest, src);

 // copies src to dest

base_url is 10 chars long, incl. its
null terminator, so src won’t be

 null-terminated

21

Spot the defect! (2)

 char src[9];
 char dest[9];

 char base_url = ”www.ru.nl/”;

 strncpy(src, base_url, 9);

 // copies base_url to src

 strcpy(dest, src);

 // copies src to dest

base_url is 10 chars long, incl. its
null terminator, so src won’t be

 null-terminated

so strcpy will overrun the buffer dest

22

Example: strcpy and strncpy

• Don’t replace

 strcpy(dest, src)s

 by

 strncpy(dest, src, sizeof(dest))s

 but by

 strncpy(dest, src, sizeof(dest)-1)s

 dst[sizeof(dest-1)] = `\0`;

 if dest should be null-terminated!

• Btw: a strongly typed programming language could of course
enforce that strings are always null-terminated...

23

Spot the defect! (3)S

 char *buf;
 int i, len;

 read(fd, &len, sizeof(len));

 // read sizeof(len) bytes, ie. an int

 // and store these in len

 buf = malloc(len);

 read(fd,buf,len);

We forget to check for bytes
 representing a negative int,

so len might be negative

len cast to unsigned and negative length overflows

read then goes beyond the end of buf

24

Spot the defect! (3)S

 char *buf;
 int i, len;

 read(fd, &len, sizeof(len));

 if (len < 0)i

 {error ("negative length"); return; }

 buf = malloc(len);

 read(fd,buf,len);

Remaining problem may be that buf is not null-terminated

25

Spot the defect! (3)S

 char *buf;
 int i, len;

 read(fd, &len, sizeof(len));

 if (len < 0)i

 {error ("negative length"); return; }

 buf = malloc(len+1);

 read(fd,buf,len);

 buf[len] = '\0'; // null terminate buf

May result in integer overflow;
we should check that

len+1 is positive

Absence of language-level security

In programming languages with “security” provisions, the
programmer would not have to worry about

• writing past the bounds of the array
(IndexOutOfBoundsException for example)

• implicit conversion from signed to unsigned integers
(forbidden or warned by compiler/typechecker)

• malloc returning null value (OutOfMemoryException
for example)

• malloc non initializing memory (by default)
• integer overflow (IntegerOverflowException for

example)

26

Spot the defect! (4)S

#ifdef UNICODE

#define _sntprintf _snwprintf

#define TCHAR wchar_t

#else

#define _sntprintf _snprintf

#define TCHAR char

#endif

TCHAR buff[MAX_SIZE];

_sntprintf(buff, sizeof(buff), ”%s\n”, input);

27

#ifdef UNICODE

#define _sntprintf _snwprintf

#define TCHAR wchar_t

#else

#define _sntprintf _snprintf

#define TCHAR char

#endif

TCHAR buff[MAX_SIZE];

_sntprintf(buff, sizeof(buff), ”%s\n”, input);

 The CodeRed worm exploited such an ANSI/Unicode mismatch

Spot the defect! (4)

_snwprintf’s 2nd param is # of chars in
buffer, not # of bytes

28

Spot the defect! (5)S

#define MAX_BUF = 256

void BadCode (char* input)v

{ short len;

 char buf[MAX_BUF];

 len = strlen(input);

 if (len < MAX_BUF) strcpy(buf,input);

}

29

Spot the defect! (5)

#define MAX_BUF = 256

void BadCode (char* input)v

{ short len;

 char buf[MAX_BUF];

 len = strlen(input);

 if (len < MAX_BUF) strcpy(buf,input);

}

 The integer overflow is the root problem, but the (heap) buffer
overflow that this enables make it exploitable

What if input is longer than 32K ?

len will be a negative number,
due to integer overflow

hence: potential
buffer overflow

30

Spot the defect! (6)S

bool CopyStructs(InputFile* f, long count)b

{ structs = new Structs[count];

 for (long i = 0; i < count; i++)f

 { if !(ReadFromFile(f,&structs[i]))){

 break;

 }

 }

31

Spot the defect! (6)S

bool CopyStructs(InputFile* f, long count)b

{ structs = new Structs[count];

 for (long i = 0; i < count; i++)f

 { if !(ReadFromFile(f,&structs[i]))){

 break;

 }

 }

And this integer overflow can lead to a (heap) buffer overflow.
(Microsoft Visual Studio 2005(!) C++ compiler adds check to prevent

this)t

effectively does a
malloc(count*sizeof(type))
which may cause integer overflow

32

Spot the defect! (7)

char buff1[MAX_SIZE], buff2[MAX_SIZE];

// make sure url a valid URL and fits in buff1 and buff2:

if (! isValid(url)) return;

if (strlen(url) > MAX_SIZE – 1) return;

// copy url up to first separator, ie. first ’/’, to buff1

out = buff1;

do {

 // skip spaces

if (*url != ’ ’) *out++ = *url;

} while (*url++ != ’/’);

strcpy(buff2, buff1);

...

33

Spot the defect! (7)
Loop termination (exploited by Blaster)(

char buff1[MAX_SIZE], buff2[MAX_SIZE];

// make sure url a valid URL and fits in buff1 and buff2:

if (! isValid(url)) return;

if (strlen(url) > MAX_SIZE – 1) return;

// copy url up to first separator, ie. first ’/’, to buff1

out = buff1;

do {

 // skip spaces

if (*url != ’ ’) *out++ = *url;

} while (*url++ != ’/’);

strcpy(buff2, buff1);

...

what if there is no ‘/’ in the URL?

length up to the first null

34

Spot the defect! (7)

char buff1[MAX_SIZE], buff2[MAX_SIZE];

// make sure url a valid URL and fits in buff1 and buff2:

if (! isValid(url)) return;

if (strlen(url) > MAX_SIZE – 1) return;

// copy url up to first separator, ie. first ’/’, to buff1

out = buff1;

do {

 // skip spaces

if (*url != ’ ’) *out++ = *url;

} while (*url++ != ’/’) && (*url != 0);

strcpy(buff2, buff1);

...

35

Spot the defect! (7)

char buff1[MAX_SIZE], buff2[MAX_SIZE];

// make sure url a valid URL and fits in buff1 and buff2:

if (! isValid(url)) return;

if (strlen(url) > MAX_SIZE – 1) return;

// copy url up to first separator, ie. first ’/’, to buff1

out = buff1;

do {

 // skip spaces

if (*url != ’ ’) *out++ = *url;

} while (*url++ != ’/’) && (*url != 0);

strcpy(buff2, buff1);

...
Order of tests is wrong (note

the first test includes ++)

 What about 0-length URLs?

Is buff1 always null-terminated?

36

Spot the defect! (8)

#include <stdio.h>

int main(int argc, char* argv[])

{ if (argc > 1)

 printf(argv[1]);

 return 0;

}

 This program is vulnerable to format string attacks, where
calling the program with strings containing special characters
can result in a buffer overflow attack.

37

Format string attacks

• Complete new type of attack, invented/discovered in 2000.
Like integer overflows, it can lead to buffer overflows.

• Strings can contain special characters, eg %s in

 printf(“Cannot find file %s”, filename);
 Such strings are called format strings
• What happens if we execute the code below?

 printf(“Cannot find file %s”);
• What may happen if we execute

 printf(string)
 where string is user-supplied ?
 Esp. if it contains special characters, eg %s, %x, %n, %hn?

38

Format string attacks

• %x reads and prints 4 bytes from stack
– this may leak sensitive data

• %n writes the number of characters printed so far onto the
stack
– this allow stack overflow attacks...

• Note that format strings break the “don’t mix data & code”
principle.

• Easy to spot & fix:
 replace printf(str) by printf(“%s”, str))

Dynamic countermeasures
incl. stack canaries

40

Dynamic countermeasures

protection by kernel
• non-executable memory (NOEXEC)

– prevents attacker executing her code

• address space layout randomisation (ASLR)(
– generally makes attacker's life harder

• instruction set randomisation
– hardware support needed to make this efficient enough

protection inserted by the compiler
• stack canaries to prevent or detect malicious changes to the

stack; examples to follow
• obfuscation of memory addresses

Doesn't prevent against heap overflows

41

Dynamic countermeasure: stack canaries

• introduced in StackGuard in gcc

• a dummy value - stack canary or cookie - is written on the
stack in front of the return address and checked when
function returns

• a careless stack overflow will overwrite the canary, which
can then be detected.

• a careful attacker can overwrite the canary with the correct
value.

• additional countermeasures:

– use a random value for the canary

– XOR this random value with the return address

– include string termination characters in the canary value

42

Further improvements

• PointGuard

– also protects other data values, eg function pointers,
with canaries

• ProPolice's Stack Smashing Protection (SSP) by IBM

– also re-orders stack elements to reduce potential for
trouble

• Stackshield has a special stack for return addresses, and
can disallow function pointers to the data segment

43

Dynamic countermeasures

NB none of these protections is perfect!
Eg

• even if attacks to return addresses are caught, integrity of
other data other the stack can still be abused

• clever attacks may leave canaries intact

• where do you store the "master" canary value

– a cleverer attack could change it

• none of this protects against heap overflows

– eg buffer overflow within a struct...

•

44

Windows 2003 Stack Protection

The subtle ways in which things can still go wrong...

• Enabled with /GS command line option

• Similar to StackGuard, except that when canary is
corrupted, control is transferred to an exception handler

• Exception handler information is stored ... on the stack
– http://www.securityfocus.com/bid/8522/info

• Countermeasure: register exception handlers, and don't
trust exception handlers that are not registered or on the
stack

• Attackers may still abuse existing handlers or point to
exception outside the loaded module...

Daniele Friolo

Other countermeasures

46

Countermeasures

• We can take countermeasures at different points
in time

– before we even begin programming

– during development

– when testing

– when executing code

 to prevent, to detect – at (pre)compile time or at
runtime -, and to migitate problems with buffer
overflows

47

Prevention

• Don’t use C or C++

• Better programmer awareness & training
 Eg read – and make other people read -

• Building Secure Software, J. Viega & G. McGraw,
2002

• Writing Secure Code, M. Howard & D. LeBlanc, 2002

• 19 deadly sins of software security, M. Howard, D
LeBlanc & J. Viega, 2005

• Secure programming for Linux and UNIX HOWTO,
 D. Wheeler,

• Secure C coding, T. Sirainen

48

Dangerous C system calls
source: Building secure software, J. Viega & G. McGraw, 2002

Extreme risk
• gets

High risk
• strcpy
• strcat
• sprintf
• scanf
• sscanf
• fscanf
• vfscanf
• vsscanf

High risk (cntd)H
• streadd

• strecpy

• strtrns

• realpath

• syslog

• getenv

• getopt

• getopt_long

• getpass

Low risk
• fgets
• memcpy
• snprintf
• strccpy
• strcadd
• strncpy
• strncat
• vsnprintf

Moderate risk
• getchar
• fgetc
• getc
• read
• bcopy

49

Prevention – use better string libraries

• there is a choice between using statically vs dynamically
allocated buffers

– static approach easy to get wrong, and chopping user
input may still have unwanted effects

– dynamic approach susceptible to out-of-memory errors,
and need for failing safely

50

Better string libraries (1)B

• libsafe.h provides safer, modified versions of eg strcpy
– prevents buffer overruns beyond current stack frame in the

dangerous functions it redefines

• libverify enhancement of libsafe
– keeps copies of the stack return address on the heap, and

checks if these match
• strlcpy(dst,src,size) and strlcat(dst,src,size)
 with size the size of dst, not the maximum length copied.
 Consistently used in OpenBSD

51

Better string libraries (2)B

• glib.h provides Gstring type for dynamically growing null-
terminated strings in C
– but failure to allocate will result in crash that cannot be

intercepted, which may not be acceptable

• Strsafe.h by Microsoft guarantees null-termination and
always takes destination size as argument

• C++ string class
– but data() and c-str()return low level C strings, ie char*,

with result of data()is not always null-terminated on all
platforms...

52

Detection before shipping

• Testing
– Difficult! How to hit the right cases?
– Fuzz testing - test for crash on long, random inputs – can be

succesful in finding some weaknesses
• Code reviews

– Expensive & labour intensive
• Code scanning tools (aka static analysis)C
 Eg

– RATS () – also for PHP, Python, Perl
– Flawfinder , ITS4, Deputy, Splint
– PREfix, PREfast by Microsoft

 plus other commercial tools
– Coverity
– Parasoft
– Klockwork.

53

More prevention & detection

• Bounds Checkers

– add additonal bounds info for pointers and
check these at run time

– eg Bcc, RTcc, CRED,

– RICH prevents integer overflows

• Safe variants of C

– adding bound checks, but also type checks
 and more: eg garbage collection or region-based memory

management)m
– eg Cyclone (http://cyclone.thelanguage.org)e , CCured, Vault,

Control-C, Fail-Safe C, …

54

More prevention & detection

The most extreme form of static analysis:

• Program verification

– proving by mathematical means (eg Hoare logic)
that memory management of a program is safe

– extremely labour-intensive 

– eg hypervisor verification project by Microsoft &
Verisoft:

• http://www.microsoft.com/emic/verisoft.mspx
https://link.springer.com/chapter/10.1007/978-3-642-05089-3_51

https://www.microsoft.com/en-us/research/project/vcc-a-verifier-for-concurrent-c/

Daniele Friolo

55

Reducing attack surface

• Not running or even installing certain software, or enabling
all features by default, mitigates the threat

56

Summary

• Buffer overflows are the top security vulnerability

• Any C(++) code acting on untrusted input is at risk

• Getting rid of buffer overflow weaknesses in C(++)
code is hard (and may prove to be impossible)c
– Ongoing arms race between countermeasures and ever

more clever attacks.

– Attacks are not only getting cleverer, using them is
getting easier

57

More general

Buffer overflow is an instance of three more general problems:

1) lack of input validation

2) mixing data & code

– data and return address on the stack

1) believing in & relying on an abstraction

– in this case, the abstraction of

procedure calls offered by C

• Attacks often exploit holes in abstractions that are not

100% enforced

58

Moral of the story

• Don’t use C(++), if you can avoid it
– but use a language that provides memory

safety, such as Java or C#

• If you do have to use C(++), become or hire an
expert

• Reading
– A Comparison of Publicly Available Tools for

Dynamic Buffer Overflow Prevention, by John
Wilander and Mariam Kamkar

