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Essence of the problem

Suppose in a C program we have an array of length 4

    char buffer[4];

What happens if we execute the statement below ?

    buffer[4] = ‘a’;                 

Anything can happen !

    If the data written (ie. the “a”) is user input that 
can be controlled by an attacker, this vulnerability 
can be exploited: anything that the attacker wants 
can happen.
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Solution to this problem

• Check array bounds at runtime
– Algol 60 proposed this back in 1960!

• Unfortunately, C and C++ have not adopted this 
solution, for efficiency reasons.

     (Ada, Perl, Python, Java, C#, and even Visual Basic have.)(

• As a result, buffer overflows have been the no 1 
security problem in software ever since.
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Problems caused by buffer overflows

• The first Internet worm, and all subsequent ones (CodeRed, 
Blaster, ...), exploited buffer overflows

• Buffer overflows cause in the order of 50% of all security 
alerts 
– Eg check out CERT, cve.mitre.org, or bugtraq

• Trends

– Attacks are getting cleverer 

• defeating ever more clever countermeasures

– Attacks are getting easier to do, by script kiddies
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Any C(++) code acting on untrusted input is at risk

Eg
• code taking input over untrusted network

– eg. sendmail, web browser, wireless network driver,...

• code taking input from untrusted user on multi-
user system, 
– esp. services running with high privileges  (as ROOT on 

Unix/Linux, as SYSTEM on Windows)o

• code acting on untrusted files
–  that have been downloaded or emailed 

• also embedded software, eg. in devices with (wireless) 
network connection such as mobile phones with Bluetooth, 
wireless smartcards, airplane navigation systems, ... 



How does buffer overflow work?
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Memory management in C/C++

• Program responsible for its memory management
• Memory management is very error-prone

– Who here has had a C(++) program crash with a 
segmentation fault?

• Typical bugs:
– Writing past the bound of an array
– Dangling pointers

• missing initialisation, bad pointer arithmetic, incorrect de-
allocation, double de-allocation, failed allocation, ...

– Memory leaks

• For efficiency, these bugs are not detected at run 
time, as discussed before:
– behaviour of a buggy program is undefined
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Process memory layout

Arguments/ Environment

Stack

Unused Memory

Heap (dynamic data)H

Static Data 

Program Code    .text
Low 
addresses

High 
addresses

Stack grows
down, 
by procedure 
calls

Heap grows
up, 
eg. by malloc 
and new.data
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Stack overflow

   The stack consists of Activation Records:

AR main()m

AR f()f

Stack grows
downwards

void f(int x) {
  char[8] buf;
  gets(buf);
}
void main() { 

  f(…); …
}
void format_hard_disk(){…}

x

return address

buf[4..7]

buf[0..3]

Buffer grows
upwards
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Stack overflow 

   What if gets() reads more than 8 bytes ?

AR main()m

AR f()f

void f(int x) {
  char[8] buf;
  gets(buf);
}
void main() { 

  f(…); …
}
void format_hard_disk(){…}

x

return address

buf[4..7]

buf[0..3]

Buffer grows
upwards
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Stack overflow

   What if gets() reads more than 8 bytes ?

AR main()m

AR f()f

Stack grows
downwards

void f(int x) {
  char[8] buf;

  gets(buf);
}
void main() { 

  f(…); …
}
void format_hard_disk(){…}

x

return address

buf[4..7]

buf[0..3]

Buffer grows
upwards

never use 

gets()!
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Stack overflow

• Lots of details to get right:
– No nulls in (character-)strings
– Filling in the correct return address: 

• Fake return address must be precisely positioned
• Attacker might not know the address of his own 

string
– Other overwritten data must not be used before return 

from function

– …
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Variants & causes

• Stack overflow is overflow of a buffer allocated on the 
stack

• Heap overflow idem, of buffer allocated on the heap 

Common causes:

• poor programming with of arrays and strings 

– esp. library functions for null-terminated strings

• problems with format strings

But other low-level coding defects than can result in buffer 
overflows, eg integer overflows or data races



What causes buffer overflows?
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Example: gets

 char buf[20];
 gets(buf); // read user input until 

            // first EoL or EoF character

• Never  use gets

• Use fgets(buf, size, stdin) instead
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Example: strcpy

 char dest[20];
 strcpy(dest, src); // copies string src to dest

•  strcpy assumes dest is long enough ,

      and assumes src is null-terminated 

• Use strncpy(dest, src, size) instead
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Spot the defect! (1)S

char buf[20];

char prefix[] = ”http://”;

...

strcpy(buf, prefix); 

  // copies the string prefix to buf

strncat(buf, path, sizeof(buf)); 

  // concatenates path to the string buf
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Spot the defect! (1)S

char buf[20];

char prefix[] = ”http://”;

...

strcpy(buf, prefix); 

  // copies the string prefix to buf

strncat(buf, path, sizeof(buf)); 

  // concatenates path to the string buf

Another common mistake is giving sizeof(path) as 3rd argument...

strncat’s 3rd parameter is number 
of chars to copy, not the buffer size
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Spot the defect! (2)S

 char src[9];
 char dest[9];

 char base_url = ”www.ru.nl”;

 strncpy(src, base_url, 9); 

    // copies base_url to src

 strcpy(dest, src);

    // copies src to dest
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Spot the defect! (2)S

 char src[9];
 char dest[9];

 char base_url = ”www.ru.nl/”;

 strncpy(src, base_url, 9); 

    // copies base_url to src

 strcpy(dest, src);

    // copies src to dest

    

base_url is 10 chars long, incl. its 
null terminator, so src won’t be 

 null-terminated
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Spot the defect! (2) 

 char src[9];
 char dest[9];

 char base_url = ”www.ru.nl/”;

 strncpy(src, base_url, 9); 

    // copies base_url to src

 strcpy(dest, src);

    // copies src to dest

  

base_url is 10 chars long, incl. its 
null terminator, so src won’t be 

 null-terminated

so strcpy will overrun the buffer dest
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Example: strcpy and strncpy

• Don’t replace

    strcpy(dest, src)s

     by  

    strncpy(dest, src, sizeof(dest))s

      but by

    strncpy(dest, src, sizeof(dest)-1)s

    dst[sizeof(dest-1)] = `\0`; 

    if dest should be null-terminated!

• Btw: a strongly typed programming language could of course 
enforce that strings are always null-terminated...
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Spot the defect!  (3)S

 char *buf;
 int i, len;

 read(fd, &len, sizeof(len)); 

      // read sizeof(len) bytes, ie. an int

      // and store these in len

 buf = malloc(len);

 read(fd,buf,len);

  

We forget to check for bytes 
   representing a negative int,

so len might be negative

len cast to unsigned and negative length overflows

read then goes beyond the end of buf
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Spot the defect!  (3)S

 char *buf;
 int i, len;

 read(fd, &len, sizeof(len));

 if (len < 0)i

    {error ("negative length"); return; }

 buf = malloc(len);

 read(fd,buf,len);

Remaining problem may be that buf is not null-terminated 
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Spot the defect!  (3)S

 char *buf;
 int i, len;

 read(fd, &len, sizeof(len));

 if (len < 0)i

    {error ("negative length"); return; }

 buf = malloc(len+1);

 read(fd,buf,len);

 buf[len] = '\0'; // null terminate buf

  

May result in integer overflow; 
we should check that 

len+1 is positive



Absence of language-level security

In programming languages with “security” provisions, the 
programmer would not have to worry about

• writing past the bounds of the array
(IndexOutOfBoundsException for example)

• implicit conversion from signed to unsigned integers
(forbidden or warned by compiler/typechecker)

• malloc returning null value (OutOfMemoryException
for example)

• malloc non initializing memory (by default)
• integer overflow (IntegerOverflowException for 

example)
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Spot the defect!  (4)S

#ifdef UNICODE

#define _sntprintf _snwprintf

#define TCHAR wchar_t

#else

#define _sntprintf _snprintf

#define TCHAR char

#endif

TCHAR buff[MAX_SIZE];

_sntprintf(buff, sizeof(buff), ”%s\n”, input);
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#ifdef UNICODE

#define _sntprintf _snwprintf

#define TCHAR wchar_t

#else

#define _sntprintf _snprintf

#define TCHAR char

#endif

TCHAR buff[MAX_SIZE];

_sntprintf(buff, sizeof(buff), ”%s\n”, input);

 The CodeRed worm exploited such an ANSI/Unicode mismatch

Spot the defect!  (4)  

_snwprintf’s 2nd param is # of chars in 
buffer, not # of bytes
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Spot the defect!  (5)S

#define MAX_BUF = 256

void BadCode (char* input)v

{   short len;

    char buf[MAX_BUF];

  

    len = strlen(input);

    if (len < MAX_BUF) strcpy(buf,input);

}
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Spot the defect!  (5) 

#define MAX_BUF = 256

void BadCode (char* input)v

{   short len;

    char buf[MAX_BUF];

  

    len = strlen(input);

    if (len < MAX_BUF) strcpy(buf,input);

}

     The integer overflow is the root problem, but the (heap) buffer 
overflow that this enables make it exploitable

What if input is longer than 32K ?

len will be a negative number, 
due to integer overflow

hence: potential
buffer overflow
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Spot the defect!  (6)S

bool CopyStructs(InputFile* f, long count)b

{   structs = new Structs[count];

    for (long i = 0; i < count; i++)f

       { if !(ReadFromFile(f,&structs[i]))){

             break;

       }

 }
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Spot the defect!  (6)S

bool CopyStructs(InputFile* f, long count)b

{   structs = new Structs[count];

    for (long i = 0; i < count; i++)f

       { if !(ReadFromFile(f,&structs[i]))){

             break;

       }

 }

And this integer overflow can lead to a (heap) buffer overflow.
(Microsoft Visual Studio 2005(!) C++ compiler adds check to prevent 

this)t

effectively does a 
malloc(count*sizeof(type)) 
which may cause integer overflow
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Spot the defect!  (7)

char buff1[MAX_SIZE], buff2[MAX_SIZE];

// make sure url a valid URL and fits in buff1 and buff2:

if (! isValid(url)) return;

if (strlen(url) > MAX_SIZE – 1) return;

// copy url up to first separator, ie. first ’/’, to buff1

out = buff1;

do {

  // skip spaces

if (*url != ’ ’) *out++ = *url;

} while (*url++ != ’/’);

strcpy(buff2, buff1);

...
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Spot the defect!  (7)
Loop termination (exploited by Blaster)(

char buff1[MAX_SIZE], buff2[MAX_SIZE];

// make sure url a valid URL and fits in buff1 and buff2:

if (! isValid(url)) return;

if (strlen(url) > MAX_SIZE – 1) return;

// copy url up to first separator, ie. first ’/’, to buff1

out = buff1;

do {

  // skip spaces

if (*url != ’ ’) *out++ = *url;

} while (*url++ != ’/’); 

strcpy(buff2, buff1);

...

what if there is no ‘/’ in the URL?

length up to the first null
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Spot the defect!  (7)

char buff1[MAX_SIZE], buff2[MAX_SIZE];

// make sure url a valid URL and fits in buff1 and buff2:

if (! isValid(url)) return;

if (strlen(url) > MAX_SIZE – 1) return;

// copy url up to first separator, ie. first ’/’, to buff1

out = buff1;

do {

  // skip spaces

if (*url != ’ ’) *out++ = *url;

} while (*url++ != ’/’) && (*url != 0);

strcpy(buff2, buff1);

...
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Spot the defect!  (7)

char buff1[MAX_SIZE], buff2[MAX_SIZE];

// make sure url a valid URL and fits in buff1 and buff2:

if (! isValid(url)) return;

if (strlen(url) > MAX_SIZE – 1) return;

// copy url up to first separator, ie. first ’/’, to buff1

out = buff1;

do {

  // skip spaces

if (*url != ’ ’) *out++ = *url;

} while (*url++ != ’/’) && (*url != 0);

strcpy(buff2, buff1);

...
Order of tests is wrong (note 

the first test includes ++)   

  What about 0-length URLs?

Is buff1 always null-terminated?
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Spot the defect!  (8)

#include <stdio.h>

int main(int argc, char* argv[]) 

{  if (argc > 1) 

     printf(argv[1]);

   return 0;

}

     This program is vulnerable to format string attacks, where 
calling the program with strings containing special characters 
can result in a buffer overflow attack.
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Format string attacks 

• Complete new type of attack, invented/discovered in 2000. 
Like integer overflows, it can lead to buffer overflows.

• Strings can contain special characters,  eg  %s in

    printf(“Cannot find file %s”, filename);
  Such strings are called format strings
• What happens if we execute the code below?

     printf(“Cannot find file %s”); 
• What may happen if we execute

     printf(string) 
     where string is  user-supplied ? 
     Esp. if it contains special characters, eg %s, %x, %n, %hn?
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Format string attacks

• %x reads and prints 4 bytes from stack
– this may leak sensitive data

• %n writes the number of characters printed so far onto the 
stack
– this allow stack overflow attacks...

• Note that format strings break the “don’t mix data & code” 
principle.

• Easy to spot & fix: 
        replace  printf(str) by  printf(“%s”, str))



Dynamic countermeasures
incl. stack canaries
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Dynamic countermeasures

protection by kernel
• non-executable memory (NOEXEC) 

– prevents attacker executing her code

• address space layout randomisation (ASLR)(
– generally makes attacker's life harder

• instruction set randomisation
– hardware support needed to make this efficient enough

protection inserted by the compiler
• stack canaries to prevent or detect malicious changes to the 

stack; examples to follow
• obfuscation of memory addresses

Doesn't prevent against heap overflows
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Dynamic countermeasure: stack canaries

• introduced in StackGuard in gcc

• a dummy value - stack canary or cookie - is written on the 
stack in front of the return address and checked when 
function returns

• a careless stack overflow will overwrite the canary, which 
can then be detected.

• a careful attacker can overwrite the canary with the correct 
value.

• additional countermeasures:

– use a random value for the canary

– XOR this random value with the return address

– include string termination characters in the canary value
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Further improvements

• PointGuard 

– also protects other data values, eg function pointers, 
with canaries 

• ProPolice's Stack Smashing Protection (SSP) by IBM

– also re-orders stack elements to reduce potential for 
trouble

• Stackshield has a special stack for return addresses, and 
can disallow function pointers to the data segment
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Dynamic countermeasures

NB none of these protections is perfect!
Eg

• even if attacks to return addresses are caught, integrity of 
other data other the stack can still be abused

• clever attacks may leave canaries intact

• where do you store the "master" canary value

– a cleverer attack could change it 

• none of this protects against heap overflows

– eg buffer overflow within a struct...

• ....
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Windows 2003 Stack Protection

The subtle ways in which things can still go wrong...

• Enabled with /GS command line option

• Similar to StackGuard, except that when canary is 
corrupted, control is transferred to an exception handler

• Exception handler information is stored ... on the stack
– http://www.securityfocus.com/bid/8522/info

• Countermeasure: register exception handlers, and don't 
trust exception handlers that are not registered or on the 
stack

• Attackers may still abuse existing handlers or point to 
exception outside the loaded module...

Daniele Friolo



Other countermeasures



46

Countermeasures

• We can take countermeasures at different points 
in time

– before we even begin programming

– during development

– when testing

– when executing code

    to prevent, to detect – at (pre)compile time or at 
runtime -, and to migitate problems with buffer 
overflows
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Prevention

• Don’t use C or C++

• Better programmer awareness & training
     Eg read – and make other people read -

• Building Secure Software, J. Viega & G. McGraw, 
2002

• Writing Secure Code, M. Howard & D. LeBlanc, 2002

• 19 deadly sins of software security, M. Howard, D 
LeBlanc & J. Viega, 2005

• Secure programming for Linux and UNIX HOWTO,      
       D. Wheeler, 

• Secure C coding, T. Sirainen 
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Dangerous C system calls 
source: Building secure software, J. Viega & G. McGraw, 2002

Extreme risk
• gets

High risk
• strcpy
• strcat
• sprintf
• scanf
• sscanf
• fscanf
• vfscanf
• vsscanf

High risk (cntd)H
• streadd

• strecpy

• strtrns

• realpath

• syslog

• getenv

• getopt

• getopt_long

• getpass

Low risk
• fgets
• memcpy
• snprintf
• strccpy
• strcadd
• strncpy
• strncat
• vsnprintf

Moderate risk
• getchar
• fgetc
• getc
• read
• bcopy
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Prevention – use better string libraries

• there is a choice between using statically vs dynamically 
allocated buffers

– static approach easy to get wrong, and chopping user 
input may still have unwanted effects

– dynamic approach susceptible to out-of-memory errors, 
and need for failing safely
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Better string libraries (1)B

• libsafe.h provides safer, modified versions of eg strcpy
– prevents buffer overruns beyond current stack frame in the 

dangerous functions it redefines

• libverify enhancement of libsafe 
– keeps copies of the stack return address on the heap, and 

checks if these match
• strlcpy(dst,src,size) and strlcat(dst,src,size) 
    with size the size of dst, not the maximum length copied.
    Consistently used in OpenBSD
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Better string libraries (2)B

• glib.h provides Gstring type for dynamically growing null-
terminated strings in C
– but failure to allocate will result in crash that cannot be 

intercepted, which may not be acceptable 

• Strsafe.h by Microsoft guarantees null-termination and 
always takes destination size as argument

• C++ string class
– but data() and c-str()return low level C strings, ie char*, 

with result of data()is not always null-terminated on all 
platforms...
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Detection before shipping

• Testing
– Difficult! How to hit the right cases?
– Fuzz testing - test for crash on long, random inputs – can be 

succesful in finding some weaknesses
• Code reviews 

– Expensive & labour intensive
• Code scanning tools (aka static analysis)C
    Eg

– RATS () – also for PHP, Python, Perl
– Flawfinder , ITS4, Deputy, Splint 
– PREfix, PREfast by Microsoft

     plus other commercial tools 
– Coverity
– Parasoft
– Klockwork.
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More prevention & detection

• Bounds Checkers

– add additonal bounds info for pointers and 
check these at run time

– eg Bcc, RTcc, CRED, .....

– RICH prevents integer overflows

• Safe variants of C

– adding bound checks, but also type checks
    and more: eg garbage collection or region-based memory 

management)m
– eg Cyclone (http://cyclone.thelanguage.org)e , CCured, Vault, 

Control-C, Fail-Safe C, …
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More prevention & detection

The most extreme form of static analysis:

• Program verification

– proving by mathematical means (eg Hoare logic) 
that memory management of a program is safe

– extremely labour-intensive 

– eg hypervisor verification project by Microsoft & 
Verisoft:

• http://www.microsoft.com/emic/verisoft.mspx
https://link.springer.com/chapter/10.1007/978-3-642-05089-3_51

https://www.microsoft.com/en-us/research/project/vcc-a-verifier-for-concurrent-c/

Daniele Friolo
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Reducing attack surface

• Not running or even installing certain software, or enabling 
all features by default, mitigates the threat
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Summary

• Buffer overflows are the top security vulnerability 

• Any C(++) code acting on untrusted input is at risk 

• Getting rid of buffer overflow weaknesses in C(++) 
code is hard (and may prove to be impossible)c
– Ongoing arms race between countermeasures and ever 

more clever attacks.

– Attacks are not only getting cleverer, using them is 
getting easier
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More general

Buffer overflow is an instance of three more general problems:

1) lack of input validation

2)  mixing data & code

– data and return address on the stack

1)  believing in & relying on an abstraction

– in this case, the abstraction of

procedure calls offered by C

• Attacks often exploit holes in abstractions that are not 

100% enforced
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Moral of the story

• Don’t use C(++),  if you can avoid it
– but use a language that provides memory 

safety, such as Java or C#

• If you do have to use C(++), become or hire an 
expert 

• Reading
– A Comparison of Publicly Available Tools for 

Dynamic Buffer Overflow Prevention, by John 
Wilander and Mariam Kamkar


