
1

Code Injection
Input Validation

Defending against code injection
Examples
Input Validation

format strings?

2

Format String
n What is a format string vulnerability

n Fundamental "C" problem

n Survey of unsafe functions and how to format

strings safely with regular C functions

n Case study: cfingerd 1.4.3 vulnerabilities

n Preventing format string vulnerabilities without

programming

n Tools to find string format issues

3

What is a Format String?
In “C”, you can print using a format string:
n printf(const char *format, ...);
n printf(“Mary has %d cats”, cats);

n %d specifies a decimal number (from an int)
n %s would specify a string argument,
n %x would specify an unsigned uppercase

hexadecimal (from an int)
n %f expects a double and converts it into decimal

notation, rounding as specified by a precision
argument

n ...

4

Fundamental "C" Problem
n No way to count arguments passed to a "C"

function, so missing arguments are not
detected

n Format string is interpreted: it mixes
code and data

n What happens if the following code is run?

int main () {
printf("Mary has %d cats");

}

5

Result

% ./a.out
Mary has -1073742416 cats

n Program reads missing arguments off
the stack!
n And gets garbage (or interesting stuff if

you want to probe the stack)

6

User-specified Format String
n What happens if the following code is run,

assuming there is an argument input by a user?

int main(int argc, char *argv[])
{

printf(argv[1]);
exit(0);

}

n Try it and input "%s%s%s%s%s%s%s%s%s"
How many "%s" arguments do you need to
crash it?

7

Result
% ./a.out "%s%s%s%s%s%s%s"
Bus error

n Program was terminated by OS
n Segmentation fault, bus error, etc... because the

program attempted to read where it was not
supposed to

n User input is interpreted as string format
(e.g., %s, %d, etc...)

n Anything can happen, depending on input!
n How would you correct the program?

8

Corrected Program
int main(int argc, char *argv[])
{

printf(“%s”, argv[1]);
exit(0);

}

% ./a.out "%s%s%s%s%s%s%s"
%s%s%s%s%s%s%s

9

Format String Vulnerabilities
n Discovered relatively recently (~2000)
n Limitation of “C” family languages
n Versatile

n Can affect various memory locations
n Can be used to create buffer overflows
n Can be used to read the stack

n Not straightforward to exploit, but examples
of root compromise scripts available on the web
n "Modify and hack from example"

10

Definition of a Format
String Vulnerability

n A call to a function with a format string
argument, where the format string is either:
n Possibly under the control of an attacker
n Not followed by appropriate number of arguments

n Difficult to establish whether a data string
could possibly be affected by an attacker;
considered very bad practice to place a string
to print as the format string argument.
n Sometimes the bad practice is confused with the

actual presence of a format string vulnerability

11

How Important Are Format
String Vulnerabilities?

n Search National Vulnerability Database (NIST) for “format
string”:
n Over 890 records overall
n 107 last 3 years (as of Aug 2020)

n Search Database a Mitre (cve.mitre.org) for “format string”:
n 667 (11 from 2018, 15 from 2017) records of vulnerabilities

n Various applications
n Databases (Oracle)
n Unix services (syslog, ftp,...)
n Linux “super” (for managing setuid functions)
n cfingerd CAN 2001-0609

n Arbitrary code execution is a frequent consequence

Daniele Friolo
132 as of 2022

12

Functions Using Format
Strings

n printf - prints to "stdout" stream
n fprintf - prints to stream
n warn - standard error output
n err - standard error output
n setproctitle - sets the invoking process's title
n sprintf(char *str, const char *format, ...);

n sprintf prints to a buffer
n What’s the problem with that?

13

Better functions than sprintf
Note: do not prevent format string vulnerabilities:
n snprintf(char *str, size_t size, const char

*format, ...);
n sprintf with length check for "size“
n Does not guarantee NUL-termination of s on some platforms

(Microsoft, Sun)
n MacOS X: NUL-termination guaranteed
n Check with "man sprintf“

n asprintf(char **ret, const char *format, ...);
n sets *ret to be a pointer to a buffer sufficiently large to

hold the formatted string .

14

Custom Functions Using
Format Strings

n It is possible to define custom functions
taking arguments similar to printf.

n wu-ftpd 2.6.1 proto.h
n void reply(int, char *fmt,...);
n void lreply(int, char *fmt,...);
n etc...

n Can produce the same kinds of vulnerabilities
if an attacker can control the format string

15

Write Anything Anywhere
"%n" format command
n Writes a number to the location specified by argument

on the stack
n Argument treated as int pointer

n Often either the buffer being written to, or the raw input,
are somewhere on the stack

n Attacker controls the pointer value!
n Writes the number of characters written so far

n Keeps counting even if buffer size limit was reached!
n “Count these characters %n”

n All the gory details you don't really need to know:
n Newsham T (2000) "Format String Attacks"

16

Case Study: Cfingerd 1.4.3
n Finger replacement

n Runs as root
n Pscan output: (CAN 2001-0609)

n defines.h:22 SECURITY: printf call should have "%s" as
argument 0

n main.c:245 SECURITY: syslog call should have "%s" as
argument 1

n main.c:258 SECURITY: syslog call should have "%s" as
argument 1

n standard.c:765 SECURITY: printf call should have "%s" as
argument 0

n etc... (10 instances total)

17

Cfingerd Analysis
n Most of these issues are not exploitable, but

one is, indirectly at that...
n Algorithm (simplified):

n Receive an incoming connection
n get the fingered username

n Perform an ident check (RFC 1413) to learn and log
the identity of the remote user

n Copy the remote username into a buffer
n Copy that again into "username@remote_address"

n remote_address would identify attack source
n Answer the finger request
n Log it

18

Cfingerd Vulnerabilities
n A string format vulnerability giving root access:

n Remote data (ident_user) is used to construct the format
string:

n snprintf(syslog_str, sizeof(syslog_str),
"%s fingered from %s",username, ident_user);

syslog(LOG_NOTICE, (char *) syslog_str);

n An off-by-one string manipulation (buffer overflow)
vulnerability that
n prevents remote_address from being logged (useful if attack

is unsuccessful, or just to be anonymous)
n Allows ident_user to be larger (and contain shell code)

19

Cfingerd Buffer Overflow
Vulnerability

memset(uname, 0, sizeof(uname));
for (xp=uname;

*cp!='\0' && *cp!='\r' && *cp!='\n'
&& strlen(uname) < sizeof(uname);
cp++)
*(xp++) = *cp;

n Off-by-one string handling error
n uname is not NUL-terminated!
n because strlen doesn't count the NUL

n It will stop copying when strlen goes reading
off outside the buffer

20

Direct Effect of Off-by-one
Error

char buf[BUFLEN], uname[64];
n "uname" and "buf" are "joined" as one

string!
n So, even if only 64 characters from the

input are copied into "uname", string
manipulation functions will work with
"uname+buf" as a single entity

n "buf" was used to read the response from
the ident server so it is the raw input

21

Consequences of Off-by-one
Error

1) Remote address is not logged due to size restriction:
§ snprintf(bleah, BUFLEN, "%s@%s", uname,

remote_addr);
§ Can keep trying various technical adjustments

(alignments, etc...) until the attack works,
anonymously

2) Not enough space for format strings, alignment
characters and shell code in buf (~60 bytes for shell
code):
§ Rooted (root compromise) when syslog call is made

§ i.e., cracker gains root privileges on the computer (equivalent
to LocalSystem account)

22

Preventing Format String
Vulnerabilities

1) Always specify a format string
§ Most format string vulnerabilities are solved by specifying

"%s" as format string and not using the data string as format
string

2) If possible, make the format string a constant
§ Extract all the variable parts as other arguments to the call
§ Difficult to do with some internationalization libraries

3) If the above two practices are not possible, use run-
time defenses such as FormatGuard
n Rare at design time
n Perhaps a way to keep using a legacy application and keep costs

down
n Increase trust that a third-party application will be safe

23

Code Scanners
n Pscan searches for format string functions

called with the data string as format string
n Can also look for custom functions

n Needs a helper file that can be generated automatically
n Pscan helper file generator at

http://www.cerias.purdue.edu/homes/pmeunier/dir_pscan.
html

n Few false positives

24

Code Injection
n Goal: trick program into executing an

attacker’s code by clever input
construction that mixes code and data

n Mixed code and data channels have special
characters that trigger a context change
between data and code interpretation
n The attacker wants to inject these meta-

characters through some clever encoding or
manipulation, so supplied data is interpreted as
code

25

Code Injection cont.
n Defend against it by using input

cleansing and validation; type casts
may help if they are possible

n Need to keep track of which data has
been cleansed, or keep track of all
sources of inputs and cleanse as the
input is received

26

How widespread? (2020 data)

n Search National Vulnerability Database
(NIST) for “code injection”:
n Over 900 records overall
n 360+ last 3 years (recent one Aug 2020)

n Search Database a Mitre (cve.mitre.org)
for “code injection”:
n 760 (80+ from 2018) records of

vulnerabilities

27

Basic Example by Command
Separation

n cat >example
#!/bin/sh
A = $1
eval "ls $A"

n Permissions of file "confidential" before exploit:
n % ls -l confidential
-rwxr-x--- 1 user user confidential

n Allow execution of "example":
n % chmod a+rx example

n Exploit (what happens?)
n %./example ".;chmod o+r *"

28

Results
n Inside the program, the eval statement becomes

equivalent to:
n eval "ls .;chmod o+r *"
n Permissions for file "confidential" after exploit:

n % ls -l confidential
-rwxr-xr-- 1 user user confidential

n Any statement after the ";" would also get
executed, because ";" is a command separator.

n The data argument for "ls" has become code!

29

Other Code Injection by
Command Substitution

n (in PHP) Backtick ``: execution in a command
line by command substitution

n `command` gets executed before the rest of
the command line

n Imagine a malicious script called “script1”:
n mkdir oups
n echo oups
n etc...

n Imagine a program that calls a shell to run grep.
n What happens when this is run?

n eval "grep `./script1` afile"

30

Answer

n Script1 is executed
n first an “oups” directory is created

n The rest of the intended command,
“grep oups afile”, is executed

31

A Vulnerable Program
int main(int argc, char *argv[], char **envp)

{
char buf [100];
buf[0] = '\0';
snprintf(buf,sizeof(buf),"grep %s text",argv[1]);
system(buf);
exit(0);
}

What happens when we run the following?
% ./a.out \`./script\`

32

Answer
n The program calls

n system(“grep `./script` text”);
n can be verified by adding "printf("%s",
buf)" to the program

n So we could make a.out execute any
program we want
n Imagine that we provide the argument remotely
n Anyone running a.out would run arbitrary code

as the owner of a.out
n What if a.out runs with root privileges?

33

Shell Metacharacters
n ‘`’ to execute something (command substitution)
n ‘;’ is a command (“pipeline”) separator
n ‘&’ start process in the background
n ‘|’ is a pipe (connecting standard output to standard input)
n ‘&&’ , ‘||’ logical operators AND and OR
n ‘<<‘ or ‘>>’ prepend, append
n # to comment out something
Refer to the appropriate man page (man csh) for all characters

n How else can code be injected into a.out?

34

Defending Against Code
Injection

n Input cleansing and validation
n Model the expected input

n Discard what does not fit (e.g., metacharacters)
n Keep track of which data has been cleansed

n e.g., Perl's taint mode
n Keep track of all sources of inputs

n Or cleanse as the input is received
n Type and range verification, type casts
n Separating code from data

n Transmit, receive and manipulate data using
different channels than for code

35

Input Cleansing

n Key to preventing code injection attacks
n Common problem where code is generated

dynamically from some data
n SQL (database Simple Query Language)
n System calls and equivalents in PHP, Windows

CreateProcess, etc...
n HTML may contain JavaScript (Cross-site

scripting vulnerabilities)

36

Intuitive Approach
Block or escape all metacharacters

n but what are they?
Problems:
n Character encodings

n octal, hexadecimal, UTF-8, UTF-16, binary,
Base-64, URL encoding, ...

n Obfuscation
n Escaped characters that can get interpreted

later
n Engineered strings such that by blocking a

character, something else is generated

37

Wrong Way to Cleanse Input
(Sanitize)

int main(int argc, char *argv[], char **envp) {

static char bad_chars[] = "/ ;[]<>&\t";

char *user_data;

char *cp;

/* Get the data */

user_data = getenv("QUERY_STRING");

/* Remove bad characters. WRONG! */

for (cp = user_data; *(cp += strcspn(cp,bad_chars));
/* */)

*cp = '_';

…

n http://www.cert.org/tech_tips/cgi_metacharacters.html

38

Real Life example: phf CGI

CVE-1999-0067
strcpy(commandstr, "/usr/local/bin/ph -m ");
escape_shell_cmd(serverstr);
strcat(commandstr, serverstr);
(...)
phfp = popen(commandstr,"r");

n What could be the problem?
n besides the potential buffer overflows

39

Real Life example: phf CGI cont.
Black List of Characters
void escape_shell_cmd(char *cmd) {

(...)
if(ind("&;`'\"|*?~<>^()[]{}$\\"
,cmd[x]) != -1){
(...)

}
n Author forgot to list newlines in "if" statement...
n Exploit: input “newline” and the commands you

want executed...

40

More Robust Cleansing
n {...}
static char ok_chars[] =

"1234567890!@%-_=+:,./\
abcdefghijklmnopqrstuvwxyz\
ABCDEFGHIJKLMNOPQRSTUVWXYZ";

{...}
for (cp = user_data; *(cp += strspn(cp,
ok_chars)); /* */)

*cp = '_';

n http://www.cert.org/tech_tips/cgi_metacharacters.html
n a.k.a. White List vs Black List design principle

41

Defense: Input Sanitization
n Do not attempt to list all forbidden

characters
n It is easy to forget and and one missed

character leads to defeat
n Make a list of all allowed characters

n Without metacharacters
n Convert to a variable of numerical type, if a

number is expected
n Truncate input strings if the expected

length is known

42

Other Input Validation
Issues

n Range of types
n Short vs long integers
n Unsigned vs signed

n Integer overflows
n Validate range (e.g., array indexes)

n Attacks can make something negative to reach forbidden
data

n Attacks can reset a counter to zero
n Data structure reference count vs garbage collection

n Strings in numerical inputs
n e.g., PHP will accept both string and numerical values

for a variable, which may allow unexpected attacks
n Use typecasts

43

Order for Cleansing and
Input Validation

1) Resolve all character encoding issues first
2) Cleanse

§ If combinations of characters can produce
metacharacters, you may need to do several
passes. Example:
§ “a” and “b” are legal if separated from each other, but

“ab” is considered a metacharacter. The character “d”
is not allowed. After you filter out “d” from “adb”, you
may be allowing “ab” through the filter!

3) Validate type, range, and format
4) Validate semantics (i.e., meaning of input)

