
1

1

Preventing Buffer Overflows
Without Programming

Idea: make the heap and stack non-executable
Because many buffer overflow attacks aim at
executing code in the data that overflowed the
buffer

Does not prevent "return into libc" overflow
attacks

Because the return address of the function on the
stack points to a standard "C" function (e.g.,
"system"), this attack does not execute code on the
stack

e.g., ExecShield for Fedora Linux (used to be
RedHat Linux)

2

Canaries on a Stack (Crispin Cowan)

Add a few bytes containing special values between
variables on the stack and the return address.
Before the function returns, check that the values
are intact.

If not, there has been a buffer overflow!
Terminate program

If the goal was a Denial-of-Service, then it still
happens, but at least the machine is not
compromised
If the canary can be read by an attacker, then a
buffer overflow exploit can be made to rewrite it

2

3

StackGuard – detect
Add Canary Word next to return address

Observation (true only for buffer o.f.)
Return address is unaltered IFF canary word is
unaltered (?)

• Guessing the
Canary ?
• Randomize

4

StackGuard - detect

When compiling the function, it adds
prologue and epilogue

Before execution of function, push word
canary into canary vector

in addition to the stack
After execution, before returning from
function check whether canary is intact
Function returns ONLY if canary is intact

3

5

StackGuard – Prevent
While function is active, make the return
address read-only

attacker cannot change the return address
any attempt will be detected
Use a library called MemGuard

mark virtual memory pages as read-only
and trap every write

legitimate writes to stack causes trap
Performance penalty

6

Canary Implementations
StackGuard
Stack-Smashing Protector (SSP)

gcc modification
Used in OpenBSD
http://www.trl.ibm.com/projects/security/ssp/

Windows: /GS option for Visual C++ .NET
These can be useful when testing too!

4

7

StackGuard Bypass
Guarding a stack is not the answer,
as B.O. is not a stack problem but a
pointer problem (controlling a
pointer –the instruction pointer in
this case-)
Consider a function with several
local variables, some of which are
pointers: if we overflow B, we can
overwrite pointer A. If this is a
function pointer, it will be called,
then pointing to our code

Arguments

Return Address

canary

LocVar: pointer A

LocVar: buffer B

LocVar: buffer A

8

StackGuard Bypass (cont.)
The return address can be
overwritten without touching the
canary value (trampolining)
Another possibility is to modify
pointer A to point to a structure
that holds function pointers,
modifying an address there; point
one of these back to buffer. If
function gets called and buffer still
around, control achieved.

Arguments

Return Address

LocVar: buffer A

LocVar: pointer A

LocVar: buffer B

canary

5

9

Arithmetic Issues:
In mathematics, integers form an infinite
set, but in systems they are binary strings
of fixed length (precision), so a finite set.
Familiar rules of arithmetic do not apply.
In unsigned 8-bit integer arithmetic
1. 255+1= 0,
2. 16 X 17=16 and
3. 0-1=255
In particular, a negative value (as in 3.) can
be interpreted as a ‘large’ positive one

10

Example (using 1.)
Consider the following code snippet that copies two

character strings into a buffer and checks the
combined length so they fit

char buf [128]
combine(char *s1, size_t len1, char *s2,size_t

len2) {
if (len1+len2+1 <= sizeof(buf)) {
strncpy(buf, s1, len1);
strncat(buf, s2, len2); }

}
The system could be attacked by constructing s1 so that len1<=

sizeof(buf) and set len2=0xFFFFFFFF
(as unsigned integer, it corresponds to 4294967295)
Now, since len1+0xFFFFFFFF+1 = len1 <=sizeof(buf))
The strncat is executed and the buffer overrun.

6

11

Example (using 3.)
Consider the following code snippet
int main(int argc, char* argv[])
{ char _t[10]

char p[]=“xxxxxxx”;
char k[]=“zzzz”;
strncpy(_t, p, sizeof(_t);
strncat(_t, k, sizeof(_t) – strlen(_t)-1);
return 0;

}
After execution, the resulting string in _t is xxxxxxxzz;
Now if we supply 10 chars in p (xxxxxxxxxx), then sizeof(_t)

and strlen(_t) are equal and the third argument is -1.
Since strncat expects unsigned as third argument, it is

interpreted as 0xFFFFFFFF and therefore the strcat is
unbounded and the buffer overrun again.

12

Important Lesson
Declare all integers as unsigned integers,
unless negative ones are really needed.
While measuring size of objects, negative
ones are not needed. If compiler flags
signed-unsigned mismatch, check if both
representations are needed; if so, care
needed to the checks implemented.
Most arithmetic bugs are caused by type
mismatch

7

13

Buffer Overflow in Java?
Not really, since Java has a type-safe memory
model, and ‘falling off’ the end of an object is not
possible.
Exploits against Java-based systems are typically
language-based (type confusion) attacks and trust
exploits (code signing errors)
Problem overflow typically occur in supporting
code external to the JVM: use, by Java-based
services, of components and services written in
weakly typed languages like C and C++
Java supports loading of DLLs and code libraries,
so that exported functions can be used directly

14

example
Public class MyJavaPacketEngine extends Thread
{

public MyJavaPacketEngine ()
{

}
static
{
System.loadLibrary(‘’packet_driver32’’);

}
}
Now calls can be made directly to the DLL.
For example
wsprintf(lpAdapter->SymbolicLink, TEXT(‘’\\\\.\\%s%s’’),

DOSNAMEPREFIX, p_AdapterName);
Assigns the binding string to an unterminated string buffer

