Preventing Buffer Overflows
:_L Without Programming

= Idea: make the heap and stack non-executable

= Because many buffer overflow attacks aim at
executing code in the data that overflowed the
buffer

= Does not prevent "return into libc" overflow
attacks
= Because the return address of the function on the
stack points to a standard "C" function (e.g.,

"system"), this attack does not execute code on the
stack

= e.g., ExecShield for Fedora Linux (used to be
RedHat Linux)

:_L Canaries on a Stack (crispin cowan)

= Add a few bytes containing special values between
variables on the stack and the return address.

= Before the function returns, check that the values
are intact.
= If not, there has been a buffer overflow!

= Terminate program

= If the goal was a Denial-of-Service, then it still
happens, but at least the machine is not
compromised

= If the canary can be read by an attacker, then a
buffer overflow exploit can be made to rewrite it

StackGuard - detect

Add Canary Word next to return address

= Observation (true only for buffer o.f.)

= Return address is unaltered IFF canary word is
unaltered (?)

FFFF
Attack
code >
- Guessing the _, [retum
String& | address | |Stack
Canar'y ‘) GrowtllT canary lGrowth
* Randomize oriabled
buff
—=— 10000

:_L StackGuard - detect

= When compiling the function, it adds
prologue and epilogue

= Before execution of function, push word
canary into canary vector
= in addition to the stack
= After execution, before returning from
function check whether canary is intact

= Function returns ONLY if canary is intact

i StackGuard - Prevent

= While function is active, make the return
address read-only
= attacker cannot change the return address
= any attempt will be detected
= Use a library called MemGuard

= mark virtual memory pages as read-only
and trap every write
= legitimate writes to stack causes trap
= Performance penalty

i Canary Implementations

= StackGuard

= Stack-Smashing Protector (SSP)
= gcc modification
= Used in OpenBSD
» http://www.trl.ibm.com/projects/security/ssp/

= Windows: /GS option for Visual C++ NET
= These can be useful when testing too!

:_L StackGuard Bypass

= Guarding a stack is not the answer,
as B.O. is not a stack problem but a
pointer problem (controlling a
pointer -the instruction pointer in
this case-)

= Consider a function with several
local variables, some of which are
pointers: if we overflow B, we can
overwrite pointer A. If thisisa
function pointer, it will be called,
then pointing to our code

Arguments

Return Address

canary

LocVar: buffer A

LocVar: pointer A

LocVar: buffer B |

:_L StackGuard Bypass (cont.)

= The return address can be
overwritten without touching the
canary value (trampolining)

= Another possibility is to modify
pointer A to point to a structure
that holds function pointers,
modifying an address there; point
one of these back to buffer. If
function gets called and buffer still
around, control achieved.

Arguments

Return Address

canary

LocVar: buffer A

LocVar: pointer A

LocVar: buffer B

:_L Arithmetic Issues:

= In mathematics, integers form an infinite
set, but in systems they are binary strings
of fixed length (precision), so a finite seft.
Familiar rules of arithmetic do not apply.

= Inunsigned 8-bit integer arithmetic
1. 255+1=0,
2. 16 X 17=16 and
3. 0-1=255

= Inparticular, a negative value (as in 3.) can
be interpreted as a 'large’ positive one

i Example (using 1.)

Consider the following code snippet that copies two
character strings into a buﬁfer and checks the
combined length so they fit

char buf [128]

combine(char *sl1, size_ t lenl, char *s2,size t
len2) {

if (lenl+len2+1 <= sizeof(buf)) {
strncpy(buf, sl1, lenl);
strncat(buf, s2, len2); }

}

The system could be attacked by constructing sl so that lenl<=
sizeof(buf) and set len2=0xFFFFFFFF

(as unsigned integer, it corresponds to 4294967295)
Now, since len1+OxFFFFFFFF+1 = lenl <=sizeof(buf))

The strncat is executed and the buffer overrun. 10

i Example (using 3.)

Consider the following code snippet
int main(int argc, char* argv[])
{ char _t[10]
char p[]="“xXxXxXxxxx"";
char k[]=“zzzz”;
strncpy(_t, p, sizeof(t);
strncat(_t, k, sizeof(t) — strlen(t)-1);
return O;
}
After execution, the resulting string in _t is Xxxxxxxzz;
Now if we supply 10 chars in p (xxxxxxxxxx), then sizeof (_t)
and strlen(_t) are equal and the third argument is -1.

Since strncat expects unsigned as third argument, it is
interpreted as OXFFFFFFFF and therefore the strcat is
unbounded and the buffer overrun again. 11

:_LImpor"ran‘r Lesson

= Declare all integers as unsigned integers,
unless negative ones are really needed.
While measuring size of objects, negative
ones are not needed. If compiler flags
signed-unsigned mismatch, check if both
representations are needed:; if so, care
needed to the checks implemented.

= Most arithmetic bugs are caused by type
mismatch

12

i Buffer Overflow in Java?

= Not really, since Java has a type-safe memory
model, and 'falling off' the end of an object is not
possible.

Exploits against Java-based systems are typically
language-based (type confusion) attacks and trust

exploits (code signing errors)

= Problem overflow typically occur in supporting
code external o the JVM: use, by Java-based
services, of components and services written in
weakly typed languages like C and C++

= Java supports loading of DLLs and code libraries,
so that exported functions can be used directly

example

Public class MyJavaPacketEngine extends Thread

{
public MyJavaPacketEngine ()
{
}
static

{

System.loadLibrary ('’packet driver32’'’);

}

Now calls can be made directly to the DLL.
For example

wsprintf (1pAdapter->SymbolicLink, TEXT ('’\\\\.\\%s%s’")

DOSNAMEPREFIX, p_AdapterName);
Assigns the binding string to an unterminated string buffer

