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Input validation

• Lack of input validation is the most commonly 
exploited vulnerability

• Many variants of attacks that exploit this
– buffer overflows – “C(++) injection”

• possibly via format string attacks and 
integer overflow attacks

– Command injection
– SQL injection
– XSS (Cross site scripting)X  - “script injection”
– ...
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Input validation

• Buffer overflows
– format string attacks
– integer overflow

• Command injection
• SQL injection
• XSS 
• File name injection 
• General remarks about input validation
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Command injection (in a CGI script)

• A CGI script might contain
         cat thefile | mail clientaddress
• An attack might enter email address             
        pippo@di.uniroma1.it | rm -rf

• What happens then ?
       cat thefile | mail pippo@di.uniroma1.it | rm -rf/

• Can you think of countermeasures ?
– validate input
– reduce access rights of CGI script (defense in depth))
– maybe we shouldn’t  use such a scripting languages for 

this?
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Command injection (in a C program)

Code that uses the system interpreter to print to a user-
specified printer might include

   char buf[1024];

   snprintf(buf,"system lpr –P %s",printer_name, 

            sizeof(buf)-1);

   system(buf);

   This can be attacked in the same way; entering    
      miro;xterm& 

   is less destructive and more interesting than ...;rm –fr /
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Command injection

• Vulnerability: many API calls and language constructs in many 
languages are affected, eg
– C/C++  system(), execvp(), ShellExecute(), ..
– Java    Runtime.exec(), ...
– Perl     system, exec, open, `, /e, ...
– Python  exec, eval, input, execfile, ...
– ...

• Countermeasures
– validate all user input 

• whitelist, not blacklist
– run with minimal privilige

• doesn't prevent, but mitigates effects 
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Input validation

• Buffer overflows
– format string attacks
– integer overflow

• Command injection
• SQL injection
• XSS 
• File name injection
• General remarks about input validation
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SQL injection

User name

Passwor d

pippo       

******     
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SQL injection

$result = mysql_query(

    “SELECT * FROM Accounts”.

    “WHERE Username = ’$username’”.

    “AND Password = ’$password’;”);

if (mysql_num_rows($result)>0)i

        $login = true;
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SQL injection

Resulting SQL query

    SELECT * FROM Accounts

    WHERE Username = ’pippo’

    AND Password = ’secret’;
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SQL injection

User name

Passwor d

’ OR 1=1; / *’

******     
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SQL injection

Resulting SQL query

    SELECT * FROM Accounts

    WHERE Username = ’’ OR 1=1;/*’

    AND Password = ’secret’;
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SQL injection

Resulting SQL query

    SELECT * FROM Accounts

    WHERE Username = ’’ OR 1=1;

    /*’AND Password = ’secret’;

Oops!
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SQL injection

• Vulnerability: any application in any programming language 
that connects to SQL database
– if it uses dynamic SQL

– NB typical books such as "PHP & MySQL for Dummies"  contain 
examples with SQL injection vulnerabilities!

• Note the common theme to many injection attacks: 
contatenating strings, some of them user input, and then 
interpreting, rendering, or executing the result 

     is a VERY BAD IDEA
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Avoiding SQL injection: Prepared Statement

Vulnerable:
  String updateString = "SELECT * FROM Account 

WHERE Username" + username + " AND Password = " 
+ password;                     
stmt.executeUpdate(updateString); 

Not vulnerable:
  PreparedStatement login = 

con.preparedStatement("SELECT * FROM Account   
          WHERE Username = ? AND Password = ?" );
  login.setString(1, username); 
  login.setString(2, password);
  login.executeUpdate();
aka parameterised query  

bind variable
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Similar:  Stored Procedures

Stored procedure in Oracle's PL/SQL
  CREATE PROCEDURE login
      (name VARCHAR(100), pwd VARCHAR(100)) AS

   DECLARE @sql nvarchar(4000) 

   SELECT @sql =' SELECT * FROM Account WHERE        

   username=' + @name + 'AND password=' + @pwd

   EXEC (@sql)E

called from Java with

     CallableStatement proc =  
    connection.prepareCall("{call login(?, ?)}"); 

   proc.setString(1, username); 

   proc.setString(2, password);
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Some observations
• Other issues – besides security - in discussions about 

prepared statements, stored procedures, bind variables, ...
– efficiency
– bandwidth between web-app and database
– stored procedures allow common fixed interface to 

several web-apps

• Moral of the story: check the details for your configuration 
(language, database system) and your chosen solution!

• Open question: Why is SQL injection still a problem???
– NB Top vulnerability in OWASP Top 10

     Why doesn't everyone use parameterised queries???
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variation: Database Command Injection

• injecting database command with ;
     not manipulating SQL query with ` 
• highly dependent on infrastructure, eg

– each database has its own commands
• eg. Microsoft SQL Server has  exec 
master.dbo.xp_cmdshell

– some configurations don't allow use of ;  
•  eg Oracle database accessed via Java or PL/SQL
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variation: Function Call Injection

• Oracle SQL has > 1000 built-in functions that can be used 
inside stored procedures, eg TRANSLATE
– TRANSLATE('acadaa', 'abcd', 'ABCD') = 'ACADAA'

• Arguments of such functions may be poisoned with other 
functions, eg

        SELECT TRANSLATE('user input'', 'abcd', 'ABCD')'
          FROM ...
     can become
       SELECT TRANSLATE(''||UTL_HTTP.REQUEST(http://..
                                              ...) ||'',
                      'abcd', 'ABCD')'
    FROM ...

      UTL_HTTP does HTTP request directly from Oracle database, 
which is probably running behind the firewall...
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Countermeasures to SQL injection

• input validation
• use prepared statements aka parameterised 

queries with bind variables
– not string concatentation
– or stored procedures,  if these are safe

• use language/system level countermeasures
– eg magic quotes in PHP

• apply principle of least privilige
– ie. minimise rights of web application

• know what you're doing: find out the threats & 
countermeasures for your specific configuration, 
programming language, database system…
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Finding such SQL injection vulnerabilites? 

• Google code search!
• Eg
        lang:php "WHERE username='$_"
        ie. http://google.com/codesearch?

hl=en&start=10&sa=N&filter=0&q=lang:php+
%22WHERE+username%3D%27%24_%22
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Input validation

• Buffer overflows
– format string attacks
– integer overflow

• Command injection
• SQL injection
• XSS (Cross site scripting) 
• File name injection  aka  path traversal
• General remarks about input validation
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File name injection

• user-supplied file name may be
– existing file        ../../../etc/passwd
– not really a file   /var/spool/lpr
– file the user can access in other ways   

    /mnt/usbkey, /tmp/file

• this may break
– confidentiality (leaking information to the user)  
– integrity (eg. of file or system)(
– availability  (eg. trying to open print device for reading) 
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File name injection

• File names constructed from user input – eg by 
string concatenation – are suspect too 

– Eg what is 
    "/usr/local/client-info/" ++ name
        if name is ../../../etc/passwd ?

• aka directory traversal attack
• validating file names is difficult: reuse existing code and/or 

use chroot jail
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Input validation

• Buffer overflows
– format string attacks
– integer overflow

• Command injection
• SQL injection
• XSS (Cross site scripting) 
• File name injection
• General remarks about input validation
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Input validation in general

• Input validations problems are the most common 
vulnerabilities

• Never ever trust any user input
– Apart from generic risks dicussed so far (command, SQL, 

XSS, filenames,...), there will be additional input risks 
specific to an application

• Beware of implicit assumptions  on user input
– eg, that usernames only contain alphanumeric characters

• Think like an attacker!
– think how you might abuse a system with weird input
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Input validation problems: prevention

find out about potential vulnerabilities:
use community resources to find out  vulnerabilities of 

the system/language used
avoid use of unsafe constructs, if possible
make sure all input is validated
at clear choke-points in code
when doing input validation

– use white-lists, not black-lists
• unless you are 100% sure your black-list is 

complete 
– reuse existing input validation code known to be 

correct
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Input validation problems: detection

• testing
    test with inputs likely to cause problems

– for buffer overflow, long inputs (fuzzing)
– for SQL injection, inputs with fragments of SQL commands
– ...

      There are some tools that can help, eg webscarab for XSS
       Note: web-application returning a page with SQL error message is 

a bad sign...
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Input validation problems: detection

• testing
    test with inputs likely to cause problems

– for buffer overflow, long inputs (fuzzing)
– for SQL injection, inputs with fragments of SQL commands
– ...

      There are some tools that can help, eg webscarab for XSS
       Note: web-application returning a page with SQL error message is 

a bad sign...
• tainting 

– effectively typing, with runtime checking or static 
analysis (more precisely, data flow analysis)a

• eg SA_PRE(Tainted=SA_True) in PREfast
• code reviews, possibly using static analysis



47

Input validation – Conclusion

• Lack of input validation no #1 problem
– in various guises

• Never trust user input!

• Think about, test, and detect malicious inputs!

• Find out about the vulnerabilities of specific 
language, platform,.. and about countermeasures



48

OWASP Top 10 – 2010 release

• injection flaws
• cross site scripting
• broken access control and session management
• insecure direct object reference
• cross site request forgery
• security misconfiguration (new)
• failure to restrict URL access
• unvalidated redirects & forwards (new)
• insecure cryptographic storage
• insecure communications

See OWAPS.org.
2004 edition still mentioned buffer overflows, but 2007 

edition no longer did
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19 Deadly sins of software security 
[Howard, LeBlanc, Viega, 2005]

• buffer overruns
• format string problems
• integer overflows
• SQL injection
• command injection
• failing to handle errors
• XSS
• failing to protect network 

traffic
• use of magic URLs or 

hidden form fields
• improper use of TLS, SSL

• weak passwords
• failing to store & protect 

data securely
• information leakage
• improper file access
• trusting network name 

resolution
• race conditions
• unauthenticated key 

exchange
• weak random numbers
• poor usability

blue ones are input problems
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24  Deadly sins of software security 
[Howard, LeBlanc, Viega, 2009]

New deadly sins in 2009 edition of the book
– C++ catastrophes
– not updating easily
– executing code with too much privilige
– sins of mobile code

Also, sins collected in 4 categories (web-apps, implementation, 
cryptographic,networking)
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These Top n lists are nice, BUT..

• There is more to security than knowing the latest 
top 10 of common security vulnerabilities
– esp. thinking about & minimizing potential 

problems in the design phase

• Some efforts at classifications of the security 
vulnerabilities
– but if you've seen enough of them, you quickly 

spot some common features
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Classification of Software Security Errors

1. Input Validation and Representation 
2. API Abuse 
3. Security Features
4. Time and State 
5. Errors
6. Code Quality 
7. Encapsulation 
*.  Environment

     [Katrina Tsipenyuk, Brian Chess, Gary McGraw, Seven Pernicious 
Kingdoms: A Taxonomy of Software Security Errors] 
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One of the CWE classifications (cve.mitre.org)O




