
2

Input validation

• Lack of input validation is the most commonly
exploited vulnerability

• Many variants of attacks that exploit this
– buffer overflows – “C(++) injection”

• possibly via format string attacks and
integer overflow attacks

– Command injection
– SQL injection
– XSS (Cross site scripting)X - “script injection”
– ...

4

Input validation

• Buffer overflows
– format string attacks
– integer overflow

• Command injection
• SQL injection
• XSS
• File name injection
• General remarks about input validation

5

Command injection (in a CGI script)

• A CGI script might contain
 cat thefile | mail clientaddress
• An attack might enter email address
 pippo@di.uniroma1.it | rm -rf

• What happens then ?
 cat thefile | mail pippo@di.uniroma1.it | rm -rf/

• Can you think of countermeasures ?
– validate input
– reduce access rights of CGI script (defense in depth))
– maybe we shouldn’t use such a scripting languages for

this?

6

Command injection (in a C program)

Code that uses the system interpreter to print to a user-
specified printer might include

 char buf[1024];

 snprintf(buf,"system lpr –P %s",printer_name,

 sizeof(buf)-1);

 system(buf);

 This can be attacked in the same way; entering
 miro;xterm&

 is less destructive and more interesting than ...;rm –fr /

7

Command injection

• Vulnerability: many API calls and language constructs in many
languages are affected, eg
– C/C++ system(), execvp(), ShellExecute(), ..
– Java Runtime.exec(), ...
– Perl system, exec, open, `, /e, ...
– Python exec, eval, input, execfile, ...
– ...

• Countermeasures
– validate all user input

• whitelist, not blacklist
– run with minimal privilige

• doesn't prevent, but mitigates effects

9

Input validation

• Buffer overflows
– format string attacks
– integer overflow

• Command injection
• SQL injection
• XSS
• File name injection
• General remarks about input validation

10

SQL injection

User name

Passwor d

pippo

11

SQL injection

$result = mysql_query(

 “SELECT * FROM Accounts”.

 “WHERE Username = ’$username’”.

 “AND Password = ’$password’;”);

if (mysql_num_rows($result)>0)i

 $login = true;

12

SQL injection

Resulting SQL query

 SELECT * FROM Accounts

 WHERE Username = ’pippo’

 AND Password = ’secret’;

13

SQL injection

User name

Passwor d

’ OR 1=1; / *’

14

SQL injection

Resulting SQL query

 SELECT * FROM Accounts

 WHERE Username = ’’ OR 1=1;/*’

 AND Password = ’secret’;

15

SQL injection

Resulting SQL query

 SELECT * FROM Accounts

 WHERE Username = ’’ OR 1=1;

 /*’AND Password = ’secret’;

Oops!

16

SQL injection

• Vulnerability: any application in any programming language
that connects to SQL database
– if it uses dynamic SQL

– NB typical books such as "PHP & MySQL for Dummies" contain
examples with SQL injection vulnerabilities!

• Note the common theme to many injection attacks:
contatenating strings, some of them user input, and then
interpreting, rendering, or executing the result

 is a VERY BAD IDEA

17

Avoiding SQL injection: Prepared Statement

Vulnerable:
 String updateString = "SELECT * FROM Account

WHERE Username" + username + " AND Password = "
+ password;
stmt.executeUpdate(updateString);

Not vulnerable:
 PreparedStatement login =

con.preparedStatement("SELECT * FROM Account
 WHERE Username = ? AND Password = ?");
 login.setString(1, username);
 login.setString(2, password);
 login.executeUpdate();
aka parameterised query

bind variable

18

Similar: Stored Procedures

Stored procedure in Oracle's PL/SQL
 CREATE PROCEDURE login
 (name VARCHAR(100), pwd VARCHAR(100)) AS

 DECLARE @sql nvarchar(4000)

 SELECT @sql =' SELECT * FROM Account WHERE

 username=' + @name + 'AND password=' + @pwd

 EXEC (@sql)E

called from Java with

 CallableStatement proc =
 connection.prepareCall("{call login(?, ?)}");

 proc.setString(1, username);

 proc.setString(2, password);

20

Some observations
• Other issues – besides security - in discussions about

prepared statements, stored procedures, bind variables, ...
– efficiency
– bandwidth between web-app and database
– stored procedures allow common fixed interface to

several web-apps

• Moral of the story: check the details for your configuration
(language, database system) and your chosen solution!

• Open question: Why is SQL injection still a problem???
– NB Top vulnerability in OWASP Top 10

 Why doesn't everyone use parameterised queries???

21

variation: Database Command Injection

• injecting database command with ;
 not manipulating SQL query with `
• highly dependent on infrastructure, eg

– each database has its own commands
• eg. Microsoft SQL Server has exec
master.dbo.xp_cmdshell

– some configurations don't allow use of ;
• eg Oracle database accessed via Java or PL/SQL

22

variation: Function Call Injection

• Oracle SQL has > 1000 built-in functions that can be used
inside stored procedures, eg TRANSLATE
– TRANSLATE('acadaa', 'abcd', 'ABCD') = 'ACADAA'

• Arguments of such functions may be poisoned with other
functions, eg

 SELECT TRANSLATE('user input'', 'abcd', 'ABCD')'
 FROM ...
 can become
 SELECT TRANSLATE(''||UTL_HTTP.REQUEST(http://..
 ...) ||'',
 'abcd', 'ABCD')'
 FROM ...

 UTL_HTTP does HTTP request directly from Oracle database,
which is probably running behind the firewall...

23

Countermeasures to SQL injection

• input validation
• use prepared statements aka parameterised

queries with bind variables
– not string concatentation
– or stored procedures, if these are safe

• use language/system level countermeasures
– eg magic quotes in PHP

• apply principle of least privilige
– ie. minimise rights of web application

• know what you're doing: find out the threats &
countermeasures for your specific configuration,
programming language, database system…

24

Finding such SQL injection vulnerabilites?

• Google code search!
• Eg
 lang:php "WHERE username='$_"
 ie. http://google.com/codesearch?

hl=en&start=10&sa=N&filter=0&q=lang:php+
%22WHERE+username%3D%27%24_%22

38

Input validation

• Buffer overflows
– format string attacks
– integer overflow

• Command injection
• SQL injection
• XSS (Cross site scripting)
• File name injection aka path traversal
• General remarks about input validation

39

File name injection

• user-supplied file name may be
– existing file ../../../etc/passwd
– not really a file /var/spool/lpr
– file the user can access in other ways

 /mnt/usbkey, /tmp/file

• this may break
– confidentiality (leaking information to the user)
– integrity (eg. of file or system)(
– availability (eg. trying to open print device for reading)

40

File name injection

• File names constructed from user input – eg by
string concatenation – are suspect too

– Eg what is
 "/usr/local/client-info/" ++ name
 if name is ../../../etc/passwd ?

• aka directory traversal attack
• validating file names is difficult: reuse existing code and/or

use chroot jail

41

Input validation

• Buffer overflows
– format string attacks
– integer overflow

• Command injection
• SQL injection
• XSS (Cross site scripting)
• File name injection
• General remarks about input validation

42

Input validation in general

• Input validations problems are the most common
vulnerabilities

• Never ever trust any user input
– Apart from generic risks dicussed so far (command, SQL,

XSS, filenames,...), there will be additional input risks
specific to an application

• Beware of implicit assumptions on user input
– eg, that usernames only contain alphanumeric characters

• Think like an attacker!
– think how you might abuse a system with weird input

43

Input validation problems: prevention

find out about potential vulnerabilities:
use community resources to find out vulnerabilities of

the system/language used
avoid use of unsafe constructs, if possible
make sure all input is validated
at clear choke-points in code
when doing input validation

– use white-lists, not black-lists
• unless you are 100% sure your black-list is

complete
– reuse existing input validation code known to be

correct

44

Input validation problems: detection

• testing
 test with inputs likely to cause problems

– for buffer overflow, long inputs (fuzzing)
– for SQL injection, inputs with fragments of SQL commands
– ...

 There are some tools that can help, eg webscarab for XSS
 Note: web-application returning a page with SQL error message is

a bad sign...

46

Input validation problems: detection

• testing
 test with inputs likely to cause problems

– for buffer overflow, long inputs (fuzzing)
– for SQL injection, inputs with fragments of SQL commands
– ...

 There are some tools that can help, eg webscarab for XSS
 Note: web-application returning a page with SQL error message is

a bad sign...
• tainting

– effectively typing, with runtime checking or static
analysis (more precisely, data flow analysis)a

• eg SA_PRE(Tainted=SA_True) in PREfast
• code reviews, possibly using static analysis

47

Input validation – Conclusion

• Lack of input validation no #1 problem
– in various guises

• Never trust user input!

• Think about, test, and detect malicious inputs!

• Find out about the vulnerabilities of specific
language, platform,.. and about countermeasures

48

OWASP Top 10 – 2010 release

• injection flaws
• cross site scripting
• broken access control and session management
• insecure direct object reference
• cross site request forgery
• security misconfiguration (new)
• failure to restrict URL access
• unvalidated redirects & forwards (new)
• insecure cryptographic storage
• insecure communications

See OWAPS.org.
2004 edition still mentioned buffer overflows, but 2007

edition no longer did

49

19 Deadly sins of software security
[Howard, LeBlanc, Viega, 2005]

• buffer overruns
• format string problems
• integer overflows
• SQL injection
• command injection
• failing to handle errors
• XSS
• failing to protect network

traffic
• use of magic URLs or

hidden form fields
• improper use of TLS, SSL

• weak passwords
• failing to store & protect

data securely
• information leakage
• improper file access
• trusting network name

resolution
• race conditions
• unauthenticated key

exchange
• weak random numbers
• poor usability

blue ones are input problems

51

24 Deadly sins of software security
[Howard, LeBlanc, Viega, 2009]

New deadly sins in 2009 edition of the book
– C++ catastrophes
– not updating easily
– executing code with too much privilige
– sins of mobile code

Also, sins collected in 4 categories (web-apps, implementation,
cryptographic,networking)

53

These Top n lists are nice, BUT..

• There is more to security than knowing the latest
top 10 of common security vulnerabilities
– esp. thinking about & minimizing potential

problems in the design phase

• Some efforts at classifications of the security
vulnerabilities
– but if you've seen enough of them, you quickly

spot some common features

54

Classification of Software Security Errors

1. Input Validation and Representation
2. API Abuse
3. Security Features
4. Time and State
5. Errors
6. Code Quality
7. Encapsulation
*. Environment

 [Katrina Tsipenyuk, Brian Chess, Gary McGraw, Seven Pernicious
Kingdoms: A Taxonomy of Software Security Errors]

55

One of the CWE classifications (cve.mitre.org)O

