A Gentle Introduction to Program Analysis

Isil Dillig
University of Texas, Austin

January 21, 2014
Programming Languages Mentoring Workshop

What is Program Analysis?

@ Very broad topic, but generally speaking, automated analysis
of program behavior

N

24

What is Program Analysis?

@ Very broad topic, but generally speaking, automated analysis
of program behavior

@ Program analysis is about developing algorithms and tools
that can analyze other programs

N

24

What is Program Analysis?

@ Very broad topic, but generally speaking, automated analysis
of program behavior

@ Program analysis is about developing algorithms and tools
that can analyze other programs

Program e 15
Analys:s g

Tool A

Applications of Program Analysis

@ Bug finding. e.g., expose as many assertion failures as
possible

Applications of Program Analysis

@ Bug finding. e.g., expose as many assertion failures as
possible

@ Security. e.g., does an app leak private user data?

Applications of Program Analysis

@ Bug finding. e.g., expose as many assertion failures as
possible

@ Security. e.g., does an app leak private user data?

o Verification. e.g., does the program always behave according
to its specification?

Applications of Program Analysis

@ Bug finding. e.g., expose as many assertion failures as
possible

@ Security. e.g., does an app leak private user data?

o Verification. e.g., does the program always behave according
to its specification?

o Compiler optimizations. e.g., which variables should be kept
in registers for fastest memory access?

Applications of Program Analysis

@ Bug finding. e.g., expose as many assertion failures as
possible

@ Security. e.g., does an app leak private user data?

o Verification. e.g., does the program always behave according
to its specification?

o Compiler optimizations. e.g., which variables should be kept
in registers for fastest memory access?

@ Automatic parallelization. e.g., is it safe to execute different
loop iterations on parallel?

Dynamic vs. Static Program Analysis

@ Two flavors of program analysis:

Dynamic vs. Static Program Analysis

@ Two flavors of program analysis:

e Dynamic analysis: Analyzes program while it is running

Dynamic vs. Static Program Analysis

@ Two flavors of program analysis:

e Dynamic analysis: Analyzes program while it is running

e Static analysis: Analyzes source code of the program

Dynamic vs. Static Program Analysis

@ Two flavors of program analysis:

e Dynamic analysis: Analyzes program while it is running

e Static analysis: Analyzes source code of the program

Dynamic

+ more precise
- results limited to
observed executions

Static
+ reasons about
all executions
- less precise

Static Analysis

o Typical static analysis question: "Given source code of
program P and desired property Q, does P exhibit Q in all
possible executions?”

Static Analysis

o Typical static analysis question: "Given source code of
program P and desired property Q, does P exhibit Q in all
possible executions?”

@ But this question is undecidable!

Static Analysis

o Typical static analysis question: "Given source code of
program P and desired property Q, does P exhibit Q in all
possible executions?”

@ But this question is undecidable!

@ This means static analyses are either:

Static Analysis

o Typical static analysis question: "Given source code of
program P and desired property Q, does P exhibit Q in all
possible executions?”

@ But this question is undecidable!

@ This means static analyses are either:

e Unsound: May say program is safe even though it is unsafe

Static Analysis

o Typical static analysis question: "Given source code of
program P and desired property Q, does P exhibit Q in all
possible executions?”

@ But this question is undecidable!

@ This means static analyses are either:

e Unsound: May say program is safe even though it is unsafe

e Sound, but incomplete: May say program is unsafe even
though it is safe

Static Analysis

o Typical static analysis question: "Given source code of
program P and desired property Q, does P exhibit Q in all
possible executions?”

@ But this question is undecidable!

@ This means static analyses are either:

e Unsound: May say program is safe even though it is unsafe

e Sound, but incomplete: May say program is unsafe even
though it is safe

o Non-terminating: Always gives correct answer when it
terminates, but may run forever

Static Analysis

o Typical static analysis question: "Given source code of
program P and desired property Q, does P exhibit Q in all
possible executions?”

@ But this question is undecidable!

@ This means static analyses are either:

e Unsound: May say program is safe even though it is unsafe

e Sound, but incomplete: May say program is unsafe even
though it is safe

o Non-terminating: Always gives correct answer when it
terminates, but may run forever

@ Many static analysis techniques are sound but incomplete.

How to design sound static analyses?

Key idea: Overapproximate (i.e., abstract) program behavior

6 /24

How to design sound static analyses?

Key idea: Overapproximate (i.e., abstract) program behavior

&

6 /24

How to design sound static analyses?

Key idea: Overapproximate (i.e., abstract) program behavior

¥

6 /24

How to design sound static analyses?

Key idea: Overapproximate (i.e., abstract) program behavior

@ Bad states outside over-approximation
= Program safe

@A

How to design sound static analyses?

Key idea: Overapproximate (i.e., abstract) program behavior

@ Bad states outside over-approximation
= Program safe

@ Bad states inside over-approximation,
but outside P

%* = false alarm

How to design sound static analyses?

Key idea: Overapproximate (i.e., abstract) program behavior

@ Bad states outside over-approximation
= Program safe

@ Bad states inside over-approximation,
but outside P

%“ = false alarm

= Goal: Construct abstractions that are
precise enough (i.e., few false alarms)
and that scale to real programs

Examples of Abstractions

Examples of Abstractions

There is no “one size fits all” abstraction

@ What information is useful depends on what you want to
prove about the program!

Examples of Abstractions

There is no “one size fits all” abstraction

@ What information is useful depends on what you want to
prove about the program!

Application Useful abstraction
No division-by-zero errors ZEro vs. non-zero

Examples of Abstractions

There is no “one size fits all” abstraction

@ What information is useful depends on what you want to
prove about the program!

Application Useful abstraction
No division-by-zero errors ZEro vs. non-zero
Data structure verification list, tree, graph, ...

Examples of Abstractions

There is no “one size fits all” abstraction

@ What information is useful depends on what you want to
prove about the program!

Application Useful abstraction
No division-by-zero errors ZEro vs. non-zero
Data structure verification list, tree, graph, ...
No out-of-bounds array accesses | ranges of integer variables

How to Create Sound Abstractions?

How to Create Sound Abstractions?

@ Useful theory for understanding how to design sound static
analyses is abstract interpretation

How to Create Sound Abstractions?

@ Useful theory for understanding how to design sound static
analyses is abstract interpretation

o Seminal '77 paper by Patrick & f
Radhia Cousot

How to Create Sound Abstractions?

@ Useful theory for understanding how to design sound static
analyses is abstract interpretation

o Seminal '77 paper by Patrick & 3
Radhia Cousot

@ Not a specific analysis, but rather a framework for designing
sound-by-construction static analyses

How to Create Sound Abstractions?

@ Useful theory for understanding how to design sound static
analyses is abstract interpretation

o Seminal '77 paper by Patrick & 3
Radhia Cousot

@ Not a specific analysis, but rather a framework for designing
sound-by-construction static analyses

@ Let's look at an example: A static analysis that tracks the sign
of each integer variable (e.g., positive, non-negative, zero etc.)

First Step: Design An Abstract Domain

@ An abstract domain is just a set of abstract values we want
to track in our analysis

10 /24

First Step: Design An Abstract Domain

@ An abstract domain is just a set of abstract values we want
to track in our analysis

@ For our example, let's fix the following abstract domain:

o pos: {z |z €Z ANz >0}
o zero: {0}
o neg: {z |z €ZANz <0}

o non-neg: {x |z €Z Az >0}

10 /24

First Step: Design An Abstract Domain

@ An abstract domain is just a set of abstract values we want
to track in our analysis

@ For our example, let's fix the following abstract domain:

o pos: {z |z €Z ANz >0}

o zero: {0}

o neg: {z |z €ZANz <0}

o non-neg: {x |z €Z Az >0}

@ In addition, every abstract domain contains:

10 /24

First Step: Design An Abstract Domain

@ An abstract domain is just a set of abstract values we want
to track in our analysis

@ For our example, let's fix the following abstract domain:

o pos: {z |z €Z ANz >0}

o zero: {0}

o neg: {z |z €ZANz <0}

o non-neg: {x |z €Z Az >0}

@ In addition, every abstract domain contains:

o T (top): “Don't know", represents any value

10 /24

First Step: Design An Abstract Domain

@ An abstract domain is just a set of abstract values we want
to track in our analysis

@ For our example, let's fix the following abstract domain:

o pos: {z |z €Z ANz >0}

o zero: {0}

o neg: {z |z €ZANz <0}

o non-neg: {x |z €Z Az >0}

@ In addition, every abstract domain contains:

o T (top): “Don't know", represents any value

o L (bottom): Represents empty-set

10 /24

Second step: Abstraction and concretization functions

e Abstraction function («) maps sets of concrete elements to
the most precise value in the abstract domain

11 /24

Second step: Abstraction and concretization functions

e Abstraction function («) maps sets of concrete elements to
the most precise value in the abstract domain

o a({2,10,0}) =

11 /24

Second step: Abstraction and concretization functions

e Abstraction function («) maps sets of concrete elements to
the most precise value in the abstract domain

o «({2,10,0}) = non-neg

11 /24

Second step: Abstraction and concretization functions

e Abstraction function («) maps sets of concrete elements to
the most precise value in the abstract domain
o «({2,10,0}) = non-neg

o a({3,99}) =

11 /24

Second step: Abstraction and concretization functions

e Abstraction function («) maps sets of concrete elements to
the most precise value in the abstract domain
o «({2,10,0}) = non-neg

o a({3,99}) = pos

11 /24

Second step: Abstraction and concretization functions

e Abstraction function («) maps sets of concrete elements to
the most precise value in the abstract domain
o «({2,10,0}) = non-neg
o a({3,99}) = pos

o a({-3,2)) =

11 /24

Second step: Abstraction and concretization functions

e Abstraction function («) maps sets of concrete elements to
the most precise value in the abstract domain
o «({2,10,0}) = non-neg
o a({3,99}) = pos

o a({-3.2})=T

11 /24

Second step: Abstraction and concretization functions

e Abstraction function («) maps sets of concrete elements to
the most precise value in the abstract domain
o «({2,10,0}) = non-neg
o a({3,99}) = pos
o a({-3,2})=T

e Concretization function (v) maps each abstract value to
sets of concrete elements

11 /24

Second step: Abstraction and concretization functions

e Abstraction function («) maps sets of concrete elements to
the most precise value in the abstract domain
o «({2,10,0}) = non-neg
o a({3,99}) = pos
o a({-3,2})=T
e Concretization function (v) maps each abstract value to

sets of concrete elements
o y(pos)={z |z €Z ANz >0}

11 /24

Lattices and Abstract Domains

@ Concretization function defines partial order on abstract
values:

12 /24

Lattices and Abstract Domains

@ Concretization function defines partial order on abstract
values:
A; < Az iff y(Aq) Cy(A2)

12 /24

Lattices and Abstract Domains

@ Concretization function defines partial order on abstract
values:
A; < Az iff y(Aq) Cy(A2)

@ Furthermore, in an abstract domain, every pair of elements
has a lub and glb = mathematical lattice

non neg \

pos zero

N

4

12 /24

Lattices and Abstract Domains

@ Concretization function defines partial order on abstract
values:
A; < Az iff y(Aq) Cy(A2)

@ Furthermore, in an abstract domain, every pair of elements
has a lub and glb = mathematical lattice

non neg \

pos zeri
1

@ Least upper bound of two elements is called their join — useful
for reasoning about control flow in programs o

Almost-Inverses

@ Important property of the abstraction and concretization
function is that they are almost inverses:

13 /24

Almost-Inverses

@ Important property of the abstraction and concretization
function is that they are almost inverses:

Y

a(y(4)) = 4 O

(07

13 /24

Almost-Inverses

@ Important property of the abstraction and concretization
function is that they are almost inverses:

Y

a(y(4)) = 4 O

(07

C € 1(a(0)) @/Q\A
~_

ry

13 /24

Almost-Inverses

@ Important property of the abstraction and concretization
function is that they are almost inverses:

vy
a(y(4)) = A S0
C S 4(a(0) @/Q\A
\7/

@ This is called a Galois insertion and captures the soundness
of the abstraction

13 /24

Step 3: Abstract Semantics

@ Given abstract domain, «, "y, need to define abstract
transformers (i.e., semantics) for each statement

14 /24

Step 3: Abstract Semantics

@ Given abstract domain, «, "y, need to define abstract
transformers (i.e., semantics) for each statement

o Describes how statements affect our abstraction

14 /24

Step 3: Abstract Semantics

@ Given abstract domain, «, "y, need to define abstract
transformers (i.e., semantics) for each statement

o Describes how statements affect our abstraction

e Abstract counter-part of operational semantics rules

14 /24

Step 3: Abstract Semantics

@ Given abstract domain, «, "y, need to define abstract
transformers (i.e., semantics) for each statement

o Describes how statements affect our abstraction

e Abstract counter-part of operational semantics rules

Operational Semantics

S: Var—Concrete value

X=yopz

S': Var— Concrete value

14 /24

Step 3: Abstract Semantics

@ Given abstract domain, «, "y, need to define abstract
transformers (i.e., semantics) for each statement

o Describes how statements affect our abstraction

e Abstract counter-part of operational semantics rules

Operational Semantics Abstract Semantics
S: Var—Concrete value A: Var— Abstract value
X=yopz X=yopz
S': Var— Concrete value A': Var— Abstract value

14 /24

Back to Our Example

@ For our sign analysis, we can define abstract transformer for
x =y + z as follows:

pos | neg zero non-neg | T | L

pos pos | T pos pos T | L
neg T | neg neg T T L
zero pos | neg zero non-neg | T | L
non-neg | pos | T | non-neg | non-neg | T | L
T T T T T T 4L

1 € 1L 1 1 1L

15 /24

Back to Our Example

@ For our sign analysis, we can define abstract transformer for
x =y + z as follows:

pos | neg zero non-neg | T | L

pos pos | T pos pos T | L
neg T | neg neg T T L
zero pos | neg zero non-neg | T | L
non-neg | pos | T | non-neg | non-neg | T | L
T T T T T T 4L

1 € 1L 1 1 1L

@ To ensure soundness of static analysis, must prove that
abstract semantics faithfully models concrete semantics

15 /24

Putting It All Together

Ab, tr,
aQ
Qct do’"a:n
% Fixed-point

Abstract engine 2

1

Y

semantics

16 /24

Putting It All Together
[

bs)

A tract dom

aj, . .
N Fixed-point
Abstract engme{-%
semantics * |

16 /24

Fixed-point Computations

o Fixed-point computation: Repeated symbolic execution of
the program using abstract semantics until our approximation
of the program reaches an equilibrium

17 /24

Fixed-point Computations

o Fixed-point computation: Repeated symbolic execution of
the program using abstract semantics until our approximation
of the program reaches an equilibrium

o Least fixed-point: Start with underapproximation and grow
the approximation until it stops growing

/

17 /24

Fixed-point Computations

o Fixed-point computation: Repeated symbolic execution of
the program using abstract semantics until our approximation
of the program reaches an equilibrium

o Least fixed-point: Start with underapproximation and grow
the approximation until it stops growing

/

@ Assuming correctness of your abstract semantics, the
least fixed point is an overapproximation of the program!

17 /24

Performing Least Fixed Point Computation

@ Represent program as a control-flow
graph x

loop head

/X

exit block branch

X =x+1 X = X+y

N

loop end

y=y+l

Performing Least Fixed Point Computation

@ Represent program as a control-flow
graph]

@ Want to compute abstract values at
every program point [oop ead

/\

exit block branch

loop end

y=y+l

—_—

Performing Least Fixed Point Computation

@ Represent program as a control-flow
graph]

@ Want to compute abstract values at

every program point [oop ead
o Initialize all abstract states to L / \
exit block branch
z% \
] X =x+1 X = X+y ST
loop end
y=y+1

Performing Least Fixed Point Computation

@ Represent program as a control-flow
graph]

@ Want to compute abstract values at

every program point | lo0p head
@ Initialize all abstract states to L / \
exit block branch
@ Repeat until no abstract state changes
at any program point: Z% \
] X =x+1 X = X+y s
loop end
y=y+1

Performing Least Fixed Point Computation

@ Represent program as a control-flow

graph —x=0
“oy=
@ Want to compute abstract values at + L
every program point |loop head | @
@ Initialize all abstract states to L / \
exit block branch
@ Repeat until no abstract state changes
at any program point: Z% \
o Compute abstract state on entry to a il X+y<__
basic block B by taking the join of b\u,/
B's predecessors loop end
y=y+l

Performing Least Fixed Point Computation

@ Represent program as a control-flow

graph —x=0
“oy=
@ Want to compute abstract values at + L
every program point |loop head | @
@ Initialize all abstract states to L / \
exit block branch
@ Repeat until no abstract state changes
at any program point: Z% \
o Compute abstract state on entry to a il X+y<__
basic block B by taking the join of b\u,/
B's predecessors loop end
y=y+l

e Symbolically execute each basic
block using abstract semantics

An Example

y

x =0
y =0;
while(y <= n)

if(z==0) {
X = x+1;
}

else {
X=X+Y;
}

y=y+1l

loop head

/X

exit block branch
z % Xw
X =Xx+1 X = X+y

N

loop end

y=y+l

19 /24

An Example

y

x =0
y =0;
while(y <= n)

if(z==0) {
X = x+1;
}

else {
X=X+Y;
}

y=y+1l

Is x always
non-negative
inside the loop?,

loop head
/ \<= n

exit block branch
z % X:O
X =Xx+1 X = X+y

\ /
loop end
y=y+l

19 /24

Fixed-Point Computation

loop head

AN

exit block branch

z% z!=0

X =x+1 X = X+y

N/

loop end

y=y+l

20 /24

Fixed-Point Computation

loop head

x=1l,y=1 ——

AN

exit block branch
x=1l,y=1 —F—

z% X!fo
x=1l,y=1 —— .

X =x+1 X = X+y

e L

~t—x=l,y=1

=1l,y=1

—x[=1l,y=1

|
x=L,y=L | jopend
y=y+l
x=1l,y=1——

20 /24

Fixed-Point Computation

X=L.Y=L——>X=
x=2Z,y=1 __>y=1
x=1l,y=1 —1>
loop head
x=1l,y=1—F1—
/ k:n
exit block branch
x=1,y=1 —— «—t—x=1,y=1
z% X!fo
x=1l,y=1l — > - xl=L,y=1
X = Xx+1 X = X+y
x=1l,y=1 ——> / ~t+—x|=1l,y=1
|
x=L,y=L——2°pend
y=y+1
x=1l,y=1 ——

20 /24

Fixed-Point Computation

x=1l,y=1l —F> _
X=Z.Y=L——>y=1
x=Z,y=P—=
loop head
x=1l,y=1 ——
/ k:n
exit block branch
x=1,y=1 —— «—t—x=1,y=1
z% X!fo
x=1l,y=1l — > - xl=L,y=1
X = Xx+1 X = X+y
x=1l,y=1 ——> / ~t+—x|=1l,y=1
|
x=L,y=L —foopend
y=y+l
x=1l,y=1 ——

20 /24

Fixed-Point Computation

x=1l,y=1 —7"F> -0
x=2Z,y=] ——> -1
x=2Z,y=P—1=
loop head x=l.y=1
x=Z,y=P ———>
/ K:n
exit block branch
x=1,y=1 —— «—t—x=1,y=1
z% X!fo
x=1l,y=1l — > - xl=L,y=1
X = X+1 X = X+y
x=1l,y=1 ——> / ~t+—x|=1l,y=1
|
x=L,y=L —foopend
y=y+l
x=1l,y=1 ——

20 /24

Fixed-Point Computation

x=1l,y=1 —7"F> -0
x=2Z,y=] ——> -1
x=Z,y=P—=
loop head x=l.y=1
x=Z,y=P ———>
/ k:n
exit block branch
x=Z,y=P __{ 5 «~+f—x=2Z,y=P
z% X!fo
x=Z,y=P—1 » o x=Z,y=P
X = Xx+1 X = X+y
x=1l,y=1 ——> / ~t+—x|=1l,y=1
x=L.y =L — [oopend
y=y+1
x=1l,y=1 ——

20 /24

Fixed-Point Computation

x=1l,y=1l —F> _
x=2Z,y=] ——> -1
x=Z,y=P—=
loop head x=l.y=1
x=Z,y=P———>
/ k:n
exit block branch
x=Z,y=P_ 1 5 «~f—Xx=2Z,y=P
z% X!fo
x=Z,y=P—1 » o xEZ,y=P
X =Xx+1 X = X+y
x=P,y=P _1 5 -——X[=1,y=
x=L.y =L — [oopend
y=y+1
x=1l,y=1 ——

20 /24

Fixed-Point Computation

x=1l,y=1l —F> _
x=2Z,y=] ——> -1
x=Z,y=P—=

loop head x=l.y=1
x=Z,y=P———>

AN

exit block branch
x=Z,y=P_ 1 5 «~f—Xx=2Z,y=P

7

x=2Z,y=P —» x=Z,y=P
X =x+1 X = X+y |
x=P,y=P __} 5 | _ x=P,y=P
x=l,y=l | lopend
y=y+l
x=1l,y=1——

20 /24

Fixed-Point Computation

x=1l,y=1l —F> _
x=2Z,y=] ——> -1
x=Z,y=P—=
loop head x=l.y=1
x=Z,y=P———>
/ k:n
exit block branch
x=2Z,y=P __| 5 «—t—x=2Z,}=P
z% X!fo
x=Z,y=P—1 » o xEZ,y=P
X = Xx+1 X = X+y
x=P,y=P _1 5 «t—— x=P,y=P
X=P,y=p__lgopend
y=y+l
x=1l,y=1 ——

20 /24

Fixed-Point Computation

x=1l,y=1l —F> _
x=2Z,y=] ——> -1
x=Z,y=P—=
loop head x=P,y=P
x=Z,y=P———>
/ k:n
exit block branch
x=Z,y=P_ 1 5 «~f—Xx=2Z,y=P
z% X!fo
x=Z,y=P—1 » o xEZ,y=P
X = X+1 X = X+y
x=P,y=P _1 5 =P,y=P
X=P,y=p__lgopend
y=y+1
x=P,y=P__ »

20 /24

Fixed-Point Computation

x=1l,y=1 —7"F> -0
x=2Z,y=] ——> -1
x=Z,y=P—=
loop head LSy S
x=NN,y=P ——>
/ k:n
exit block branch
x=Z,y=P_ 1 5 «~f—Xx=2Z,y=P
z% X!fo
x=Z,y=P—1 » o xEZ,y=P
X = Xx+1 X = X+y
x=P,y=P | > <~t+—— xX=P,y=P
x=P,y=P _Igopend

y=y+l

x=P,y=P 1 »

20 /24

Fixed-Point Computation

x=1l,y=1 —7"F> -0
x=2Z,y=] ——> -1
x=Z,y=P—=
loop head x=P,y=P
x=NN,y=P ——>

AN

exit block branch
X=NN,y=P 4+——> <—T—x=NN,y=P
z% X!fo
x=NN,y=P —1— <«1——x=NN,y=P
X = Xx+1 X = X+y
x=P,y=P | > <~t+—— xX=P,y=P

N/

x=P,y=P _Igopend
y=y+1

x=P,y=P 1 »

20 /24

Fixed-Point Computation

x=1l,y=1 —7"F> -0
x=2Z,y=] ——> -1
x=Z,y=P—=
loop head x=P,y=P
XxX=NN,y=P—>

AN

exit block branch
x=NN,y=P—— <—1—x=NN,y=P
z% X!fo
x=NN,y=P —— <] xFENN,y=P
X = X+1 X = X+y
x=P,y=P __} 5 =P,y=P
x=P,y=P _Igopend
y=y+1
x=P,y=P L »

20 /24

Fixed-Point Computatio

n

[}

X X X
Nflsll}—
< < <
'ufilf—
bl
)

]

x=P,y=P

Xx=NN,y=P—

loop head
—

AN

=NN,y=P

exit block branch
Xx=NN,y=P—F——> X
z% X!fo
x=NN,y=P —— -
X =x+1 X = X+y
x=P,y=P __1 5
x=P,y=P _Igopend
y=y+l
x=P,y=P 1 »

20 /24

Fixed-Point Computation

x=1l,y=1 —7"F> -0
x=2Z,y=] ——> -1
x=Z,y=P—=
loop head x=P,y=P
XxX=NN,y=P—>

AN

exit block branch
x=NN,y=P——> <—T—x=NN,y=P
z% X!fo
x=NN,y=P —1— <] xFENN,y=P
X = Xx+1 X = X+y
x=P,y=P | 5 =P,y=P
x=P,y=P __Igopend
y=y+1
x=P,y=P 1| »

20 /24

Fixed-Point Computation

x=1l,y=1 —7"F> -0
x=2Z,y=] ——> -1
x=2Z,y=P—>= Fixed point!
loop head SRR
X=NN,y=P——>

AN

exit block branch
Xx=NN,y=P———> <—T—x=NN,y=P
z% X!fo
x=NN,y=P —1— <] xFENN,y=P
X = X+1 X = X+y
x=P,y=P __} 5 =P,y=P
x=P,y=P _Igopend
y=y+1
x=P,y=P L »

20 /24

Termination of Fixed Point Computation

@ In this example, we quickly reached least fixed point — but
does this computation always terminate?

21/24

Termination of Fixed Point Computation

@ In this example, we quickly reached least fixed point — but
does this computation always terminate?

e Yes, assuming abstract domain forms complete lattice

21/24

Termination of Fixed Point Computation

@ In this example, we quickly reached least fixed point — but
does this computation always terminate?

e Yes, assuming abstract domain forms complete lattice

o This means every subset of elements (including infinite
subsets) have a LUB

21/24

Termination of Fixed Point Computation

@ In this example, we quickly reached least fixed point — but
does this computation always terminate?

e Yes, assuming abstract domain forms complete lattice

o This means every subset of elements (including infinite
subsets) have a LUB

@ Unfortunately, many interesting domains do not have this
property, so we need widening operators for convergence.

21/24

Lessons To Take Away

@ Considered only one static analysis approach, but illustrates
two key ideas underlying program analysis:

Lessons To Take Away

@ Considered only one static analysis approach, but illustrates
two key ideas underlying program analysis:

e Abstraction: Only reason about certain properties of interest

Lessons To Take Away

@ Considered only one static analysis approach, but illustrates
two key ideas underlying program analysis:

e Abstraction: Only reason about certain properties of interest

o Fixed-point computation: Allows us to obtain sound
overapproximation of the program

Lessons To Take Away

@ Considered only one static analysis approach, but illustrates
two key ideas underlying program analysis:

e Abstraction: Only reason about certain properties of interest

o Fixed-point computation: Allows us to obtain sound
overapproximation of the program

@ But many static analyses also differ in several ways:

22 /24

Lessons To Take Away

@ Considered only one static analysis approach, but illustrates
two key ideas underlying program analysis:

e Abstraction: Only reason about certain properties of interest

o Fixed-point computation: Allows us to obtain sound
overapproximation of the program

@ But many static analyses also differ in several ways:

e Flow (in)sensitivity: Some analyses only compute facts for
the whole program, not for every program point

22 /24

Lessons To Take Away

@ Considered only one static analysis approach, but illustrates
two key ideas underlying program analysis:

e Abstraction: Only reason about certain properties of interest

o Fixed-point computation: Allows us to obtain sound
overapproximation of the program

@ But many static analyses also differ in several ways:

e Flow (in)sensitivity: Some analyses only compute facts for
the whole program, not for every program point

o Path sensitivity: More precise analyses compute different
facts for different program paths

22 /24

Lessons To Take Away

@ Considered only one static analysis approach, but illustrates
two key ideas underlying program analysis:

e Abstraction: Only reason about certain properties of interest

o Fixed-point computation: Allows us to obtain sound
overapproximation of the program

@ But many static analyses also differ in several ways:

e Flow (in)sensitivity: Some analyses only compute facts for
the whole program, not for every program point

o Path sensitivity: More precise analyses compute different
facts for different program paths

e Analysis direction: Forwards vs. backwards

22 /24

