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Applications of Program Analysis

@ Bug finding. e.g., expose as many assertion failures as
possible

@ Security. e.g., does an app leak private user data?

o Verification. e.g., does the program always behave according
to its specification?

o Compiler optimizations. e.g., which variables should be kept
in registers for fastest memory access?

@ Automatic parallelization. e.g., is it safe to execute different
loop iterations on parallel?
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@ Two flavors of program analysis:

e Dynamic analysis: Analyzes program while it is running

e Static analysis: Analyzes source code of the program

Dynamic

+ more precise
- results limited to
observed executions

Static
+ reasons about
all executions
- less precise
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Static Analysis

o Typical static analysis question: "Given source code of
program P and desired property Q, does P exhibit Q in all
possible executions?”

@ But this question is undecidable!

@ This means static analyses are either:

e Unsound: May say program is safe even though it is unsafe

e Sound, but incomplete: May say program is unsafe even
though it is safe

o Non-terminating: Always gives correct answer when it
terminates, but may run forever

@ Many static analysis techniques are sound but incomplete.
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How to design sound static analyses?

Key idea: Overapproximate (i.e., abstract) program behavior

@ Bad states outside over-approximation
= Program safe

@ Bad states inside over-approximation,
but outside P

%“ = false alarm

= Goal: Construct abstractions that are
precise enough (i.e., few false alarms)
and that scale to real programs
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Examples of Abstractions

There is no “one size fits all” abstraction

@ What information is useful depends on what you want to
prove about the program!

Application Useful abstraction
No division-by-zero errors ZEro vs. non-zero
Data structure verification list, tree, graph, ...
No out-of-bounds array accesses | ranges of integer variables
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How to Create Sound Abstractions?

@ Useful theory for understanding how to design sound static
analyses is abstract interpretation

o Seminal '77 paper by Patrick & 3
Radhia Cousot

@ Not a specific analysis, but rather a framework for designing
sound-by-construction static analyses

@ Let's look at an example: A static analysis that tracks the sign
of each integer variable (e.g., positive, non-negative, zero etc.)
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@ An abstract domain is just a set of abstract values we want
to track in our analysis

@ For our example, let's fix the following abstract domain:

o pos: {z |z €Z ANz >0}

o zero: {0}

o neg: {z |z €ZANz <0}

o non-neg: {x |z €Z Az >0}

@ In addition, every abstract domain contains:

o T (top): “Don't know", represents any value

o L (bottom): Represents empty-set

10 /24
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the most precise value in the abstract domain
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Second step: Abstraction and concretization functions

e Abstraction function («) maps sets of concrete elements to
the most precise value in the abstract domain
o «({2,10,0}) = non-neg
o a({3,99}) = pos
o a({-3,2})=T
e Concretization function (v) maps each abstract value to

sets of concrete elements
o y(pos)={z |z €Z ANz >0}

11 /24
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Lattices and Abstract Domains

@ Concretization function defines partial order on abstract
values:
A; < Az iff y(Aq) Cy(A2)

@ Furthermore, in an abstract domain, every pair of elements
has a lub and glb = mathematical lattice

non neg \

pos zeri
1

@ Least upper bound of two elements is called their join — useful
for reasoning about control flow in programs o



Almost-Inverses

@ Important property of the abstraction and concretization
function is that they are almost inverses:

13 /24



Almost-Inverses

@ Important property of the abstraction and concretization
function is that they are almost inverses:

Y

a(y(4)) = 4 O

(07

13 /24



Almost-Inverses

@ Important property of the abstraction and concretization
function is that they are almost inverses:

Y

a(y(4)) = 4 O

(07

C € 1(a(0)) @/Q\A
~_

ry

13 /24



Almost-Inverses

@ Important property of the abstraction and concretization
function is that they are almost inverses:

vy
a(y(4)) = A S0
C S 4(a(0) @/Q\A
\7/

@ This is called a Galois insertion and captures the soundness
of the abstraction

13 /24
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Step 3: Abstract Semantics

@ Given abstract domain, «, "y, need to define abstract
transformers (i.e., semantics) for each statement

o Describes how statements affect our abstraction

e Abstract counter-part of operational semantics rules

Operational Semantics Abstract Semantics
S: Var—Concrete value A: Var— Abstract value
X=yopz X=yopz
S': Var— Concrete value A': Var— Abstract value
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Back to Our Example

@ For our sign analysis, we can define abstract transformer for
x =y + z as follows:

pos | neg zero non-neg | T | L

pos pos | T pos pos T | L
neg T | neg neg T T L
zero pos | neg zero non-neg | T | L
non-neg | pos | T | non-neg | non-neg | T | L
T T T T T T 4L
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Back to Our Example

@ For our sign analysis, we can define abstract transformer for
x =y + z as follows:

pos | neg zero non-neg | T | L

pos pos | T pos pos T | L
neg T | neg neg T T L
zero pos | neg zero non-neg | T | L
non-neg | pos | T | non-neg | non-neg | T | L
T T T T T T 4L

1 € 1L 1 1 1L

@ To ensure soundness of static analysis, must prove that
abstract semantics faithfully models concrete semantics
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Putting It All Together

Ab, tr,
aQ
Qct do’"a:n
% Fixed-point

Abstract engine 2

1

Y

semantics
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Putting It All Together
[

bs )

A tract dom

aj, . .
N Fixed-point
Abstract engme{-%
semantics * |
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Fixed-point Computations

o Fixed-point computation: Repeated symbolic execution of
the program using abstract semantics until our approximation
of the program reaches an equilibrium

o Least fixed-point: Start with underapproximation and grow
the approximation until it stops growing

/

@ Assuming correctness of your abstract semantics, the
least fixed point is an overapproximation of the program!
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Performing Least Fixed Point Computation

@ Represent program as a control-flow

graph —x=0
“oy=
@ Want to compute abstract values at + L
every program point |loop head | @
@ Initialize all abstract states to L / \
exit block branch
@ Repeat until no abstract state changes
at any program point: Z% \
o Compute abstract state on entry to a il X+y<__
basic block B by taking the join of b\u,/
B's predecessors loop end
y=y+l

e Symbolically execute each basic
block using abstract semantics



An Example

y

x =0
y =0;
while(y <= n)

if(z==0) {
X = x+1;
}

else {
X=X+Y;
}

y=y+1l

loop head

/X

exit block branch
z % Xw
X =Xx+1 X = X+y

N

loop end

y=y+l
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An Example

y

x =0
y =0;
while(y <= n)

if(z==0) {
X = x+1;
}

else {
X=X+Y;
}

y=y+1l

Is x always
non-negative
inside the loop?,

loop head
/ \<= n

exit block branch
z % X:O
X =Xx+1 X = X+y

\ /
loop end
y=y+l
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Fixed-Point Computation

loop head

AN

exit block branch

z% z!=0

X =x+1 X = X+y

N/

loop end

y=y+l
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Fixed-Point Computation

loop head

x=1l,y=1 ——

AN

exit block branch
x=1l,y=1 —F—

z% X!fo
x=1l,y=1 —— .

X =x+1 X = X+y

e L

~t—x=l,y=1

=1l,y=1

—x[=1l,y=1

|
x=L,y=L | jopend
y=y+l
x=1l,y=1——
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Termination of Fixed Point Computation

@ In this example, we quickly reached least fixed point — but
does this computation always terminate?

e Yes, assuming abstract domain forms complete lattice

o This means every subset of elements (including infinite
subsets) have a LUB

@ Unfortunately, many interesting domains do not have this
property, so we need widening operators for convergence.
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@ Considered only one static analysis approach, but illustrates
two key ideas underlying program analysis:

e Abstraction: Only reason about certain properties of interest

o Fixed-point computation: Allows us to obtain sound
overapproximation of the program

@ But many static analyses also differ in several ways:

e Flow (in)sensitivity: Some analyses only compute facts for
the whole program, not for every program point

o Path sensitivity: More precise analyses compute different
facts for different program paths

e Analysis direction: Forwards vs. backwards
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