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What is Program Analysis?

Very broad topic, but generally speaking, automated analysis
of program behavior

Program analysis is about developing algorithms and tools
that can analyze other programs
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Applications of Program Analysis

Bug finding. e.g., expose as many assertion failures as
possible

Security. e.g., does an app leak private user data?

Verification. e.g., does the program always behave according
to its specification?

Compiler optimizations. e.g., which variables should be kept
in registers for fastest memory access?

Automatic parallelization. e.g., is it safe to execute different
loop iterations on parallel?
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Dynamic vs. Static Program Analysis

Two flavors of program analysis:

Dynamic analysis: Analyzes program while it is running

Static analysis: Analyzes source code of the program
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Static Dynamic
+ reasons about
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Static Analysis

Typical static analysis question: ”Given source code of
program P and desired property Q, does P exhibit Q in all
possible executions?”

But this question is undecidable!

This means static analyses are either:

Unsound: May say program is safe even though it is unsafe

Sound, but incomplete: May say program is unsafe even
though it is safe

Non-terminating: Always gives correct answer when it
terminates, but may run forever

Many static analysis techniques are sound but incomplete.
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How to design sound static analyses?

Key idea: Overapproximate (i.e., abstract) program behavior
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Key idea: Overapproximate (i.e., abstract) program behavior

Bad states outside over-approximation
⇒ Program safe

Bad states inside over-approximation,
but outside P
⇒ false alarm

⇒ Goal: Construct abstractions that are
precise enough (i.e., few false alarms)
and that scale to real programs
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Examples of Abstractions

There is no “one size fits all” abstraction

What information is useful depends on what you want to
prove about the program!

Application Useful abstraction

No division-by-zero errors zero vs. non-zero

Data structure verification list, tree, graph, . . .

No out-of-bounds array accesses ranges of integer variables
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How to Create Sound Abstractions?

Useful theory for understanding how to design sound static
analyses is abstract interpretation

Seminal ’77 paper by Patrick &
Radhia Cousot

Not a specific analysis, but rather a framework for designing
sound-by-construction static analyses

Let’s look at an example: A static analysis that tracks the sign
of each integer variable (e.g., positive, non-negative, zero etc.)
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First Step: Design An Abstract Domain

An abstract domain is just a set of abstract values we want
to track in our analysis

For our example, let’s fix the following abstract domain:

pos: {x | x ∈ Z ∧ x > 0}

zero: {0}

neg: {x | x ∈ Z ∧ x < 0}

non-neg: {x | x ∈ Z ∧ x ≥ 0}

In addition, every abstract domain contains:

> (top): “Don’t know”, represents any value

⊥ (bottom): Represents empty-set
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Second step: Abstraction and concretization functions

Abstraction function (α) maps sets of concrete elements to
the most precise value in the abstract domain

α({2, 10, 0}) =

non-neg

α({3, 99}) =

pos

α({−3, 2}) =

>

Concretization function (γ) maps each abstract value to
sets of concrete elements

γ(pos) = {x | x ∈ Z ∧ x > 0}
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Lattices and Abstract Domains

Concretization function defines partial order on abstract
values:

A1 ≤ A2 iff γ(A1) ⊆ γ(A2)

Furthermore, in an abstract domain, every pair of elements
has a lub and glb ⇒ mathematical lattice

non-neg

neg

pos zero

Least upper bound of two elements is called their join – useful
for reasoning about control flow in programs
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Almost-Inverses

Important property of the abstraction and concretization
function is that they are almost inverses:

This is called a Galois insertion and captures the soundness
of the abstraction
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Step 3: Abstract Semantics

Given abstract domain, α, γ, need to define abstract
transformers (i.e., semantics) for each statement

Describes how statements affect our abstraction

Abstract counter-part of operational semantics rules
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Back to Our Example

For our sign analysis, we can define abstract transformer for
x = y + z as follows:

pos neg zero non-neg > ⊥
pos pos > pos pos > ⊥
neg > neg neg > > ⊥
zero pos neg zero non-neg > ⊥

non-neg pos > non-neg non-neg > ⊥
> > > > > > ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

To ensure soundness of static analysis, must prove that
abstract semantics faithfully models concrete semantics
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Putting It All Together

Fixed-point 
    engine

Abstract domain

 Abstract 
semantics

P
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Fixed-point Computations

Fixed-point computation: Repeated symbolic execution of
the program using abstract semantics until our approximation
of the program reaches an equilibrium

Least fixed-point: Start with underapproximation and grow
the approximation until it stops growing

Assuming correctness of your abstract semantics, the
least fixed point is an overapproximation of the program!
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Performing Least Fixed Point Computation

Represent program as a control-flow
graph

Want to compute abstract values at
every program point

Initialize all abstract states to ⊥

Repeat until no abstract state changes
at any program point:

Compute abstract state on entry to a
basic block B by taking the join of
B’s predecessors

Symbolically execute each basic
block using abstract semantics

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

y = y+1
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An Example

x = 0;
y =0;

while(y <= n) 
{
   if (z == 0) {
      x = x+1;
   }
   else {
      x = x + y;
   }
   y = y+1 
}

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

y = y+1
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Termination of Fixed Point Computation

In this example, we quickly reached least fixed point – but
does this computation always terminate?

Yes, assuming abstract domain forms complete lattice

This means every subset of elements (including infinite
subsets) have a LUB

Unfortunately, many interesting domains do not have this
property, so we need widening operators for convergence.
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Lessons To Take Away

Considered only one static analysis approach, but illustrates
two key ideas underlying program analysis:

Abstraction: Only reason about certain properties of interest

Fixed-point computation: Allows us to obtain sound
overapproximation of the program

But many static analyses also differ in several ways:

Flow (in)sensitivity: Some analyses only compute facts for
the whole program, not for every program point

Path sensitivity: More precise analyses compute different
facts for different program paths

Analysis direction: Forwards vs. backwards
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