
Approaches and Tools
for code Analysis

This presentation is released under the Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
license
Adapted from David A. Wheeler

Outline

n Types of analysis (static/dynamic/hybrid)
n Some measurement terminology

n Static analysis
n Dynamic analysis (fuzz testing)
n Hybrid analysis
n Operational
n Fool with a tool
n SWAMP
n Adopting tools

2

Types of analysis

n Static analysis: Approach for verifying software (including
finding defects) without executing software
n Source code vulnerability scanning tools, code inspections,

etc.
n Dynamic analysis: Approach for verifying software (including

finding defects) by executing software on specific inputs and
checking results (“oracle”)
n Functional testing, fuzz testing, etc.

n Hybrid analysis: Combine above approaches
n Operational: Tools in operational setting

n Minimize risks, report information back, etc.
n may be static, dynamic, hybrid; often dynamic

3

Basic measurement terminology

n False positive rate, FPR = #FP/(#TP+#FP) “Probability alert is
false”

n True positive rate, TPR = #TP/(#TP + #FN) “% vulnerabilities
found” (sensitivity)

n Developers worry about large false positive rate (FPR)
n “Tool report wasted my time”

n Auditors worry about small or <100% TPR for a given category
n “Tool missed something important” 4

Analysis/tool
report

Report correct Report incorrect

Reported a defect True positive (TP):
Correctly reported a
defect

False positive (FP):
Incorrect, it reported a
“defect” that’s not a defect
(“Type I error”)

Did not report a
defect (there)

True negative (TN):
Correctly did not
report a (given)
defect

False negative (FN):
Incorrect because it failed
to report a defect (“Type
II error”)

Receiver operating
characteristic (ROC) curve

n Binary classifiers must generally
trade off between FP rates and
TP rates
n To get more reports (larger TP

rate), must accept larger FP rate
n What’s more important to you, low

FP rate or high TP rate?
n ROC curve (from WW II)

graphically illustrates this
n Don’t normally know the true

values for given tools, but
effect is still pronounced
n Tool developer focus
n Tool users can configure tool to

affect trade-off 5

Sample ROC curve
[Source: Wikipedia “ROC curve”]

Measurement roll-ups

n Precision (true positive rate) = #TP/(#TP+#FP)
n Recall (sensitivity, soundness, find rate) =

#TP/(#TP+#FN)
n F-score (harmonic mean) =

2 x (Precision x Recall) / (Precision + Recall)
n Discrimination rate = #Discriminations /

#Test_Pairs
n Given a pair of tests (one with defect, one without)
n Discrimination occurs if tool correctly reports flaw (TP)

in test with flaw AND does not when there is no flaw
(TN)

n All these values 0..1, where higher is better

6

Source: CAS Static Analysis Tool Study - Methodology (Dec 2011)

http://samate.nist.gov/docs/CAS_2011_SA_Tool_Method.pdf

http://samate.nist.gov/docs/CAS_2011_SA_Tool_Method.pdf

Some tool information
sources

n Software SOAR (“State-of-the-Art Resources (SOAR) for Software
Vulnerability Detection, Test, and Evaluation”) by David A. Wheeler and Rama
S. Moorthy, IDA Paper P-5061

n http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-
20140716.pdf

n “Appendix E” has a large matrix of different types of tools
n NIST SAMATE (http://samate.nist.gov)

n “Classes of tools and techniques”: http://samate.nist.gov/index.php/Tool_Survey.html
n Can test tools using Software Assurance Reference Dataset (SARD), formerly known as

the SAMATE Reference Dataset (SRD). It’s a set of programs with known properties: http://samate.nist.gov/SARD/
n Build security in (https://buildsecurityin.us-cert.gov)

n Software Assurance (SwA) Technology and tools working group
n Overview of SwA tools:
https://buildsecurityin.us-cert.gov/swa/swa_tools.html
n NAVSEA “Software Security Assessment Tools”
https://buildsecurityin.us-cert.gov/swa/downloads/NAVSEA-Tools-Paper-2009-03-02.pdf

n NSA Center for Assured Software (CAS)
n OWASP (https://www.owasp.org)

7

http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf
http://samate.nist.gov/
http://samate.nist.gov/index.php/Tool_Survey.html
http://samate.nist.gov/SARD/
https://buildsecurityin.us-cert.gov/
https://buildsecurityin.us-cert.gov/swa/TTPE_WG.html
https://buildsecurityin.us-cert.gov/swa/TTPE_WG.html
https://buildsecurityin.us-cert.gov/swa/downloads/NAVSEA-Tools-Paper-2009-03-02.pdf
https://www.owasp.org/

Static analysis

8

Static analysis:
Source vs. Executables
n Source code pros:

n Provides much more context; executable-only tools can
miss important information

n Can examine variable names and comments (can be very
helpful!)

n Can fix problems found (hard with just executable)
n Difficult to decompile code

n Source code cons:
n Can mislead tools – executable runs, not source (if

there’s a difference)
n Often cannot get source for proprietary off-the-shelf

programs
n Can get for open source software
n Often can get for custom

n Bytecode is somewhere between

9

(Some) Static analysis approaches

n Human analysis (including peer reviews)
n Type checkers
n Compiler warnings
n Style checkers / defect finders / quality scanners
n Security analysis:

n Security weakness analysis - text scanners
n Security weakness analysis - beyond text scanners

n Property checkers
n Knowledge extraction
n formal methods (separately)

10Different people will group approaches in different ways

Human (manual) analysis

n Humans are great at discerning context and intent
n Get bored and overwhelmed
n Expensive

n Especially if analyzing executables
n Can be one person, e.g., “desk-checking”
n Peer reviews

n Inspections: Special way to use group, defined roles including
“reader”; see IEEE standard 1028

n Can focus on specific issues
n e.g., “Is everything that’s supposed be authenticated covered

by authentication processes?”

11

Automated tool limitations

n Tools typically don’t “understand”:
n System architecture
n System mission/goal
n Technical environment
n Human environment

n Except for formal methods…
n Most have significant FP and/or FN rates

n Best when part of a process to develop secure
software, not as the only mechanism

12

Typical static analysis tool

13

Source
code

Byte
code

Execu-
table

Build
Instr.

Parser/
Extracto

r

Modeling rules
(compiler version,

environment, what’s
trusted, etc.)

Intermediate
Representation

(IR)

Analyzer

Analyze
r

AnalyzerBuilt-in
query rules

User
rules

Results
Viewer

Database

QueriesLibrary/F
wk config

IR may be
specific to tool,
compiler (LLVM, gcc),
language (ASIS), or a
standard (KDM)

Static analysis tools not specific to
security can still be useful

n Many static analysis tools’ focus is other than security
n may look for generic defects, or focus on “code cleanliness”

(maintainability, style, “quality”etc.) but some defects are
security vulnerabilities

n Reports that “clean” code is easier for other (security-
specific) static analysis to analyze (for fewer false
positives/negatives)

n probably easier for humans to review too
n no hard evidence, though; some would be welcome!

n Such tools often faster, cheaper and easier
n many do not need to do whole-program analysis

n Such tools may be useful in reducing as a precursor
step before using security-specific tools

n Java users: Consider quality scanners FindBugs or PMD

14

Type checkers

n Many languages have static type checking built in
n Some more rigorous than others
n C/C++ not very strong (and must often work

around)
n Java/C# stronger (interfaces, etc., ease use)

n Can detect some defects before fielding
n Including some security defects
n Also really useful in documenting intent

n Work with type system – be as narrow as you can
n Beware diminishing returns

15

Compiler warnings: Not security-
specific but useful

n Where practical, enable compiler/interpreter warnings and fix
anything found
n E.g., gcc “-Wall -pedantic -Wextra”, perl’s “use strict”
n Include in implementation/build commands

n Autoconf: GNU autoconf archive https://www.gnu.org/software/autoconf-
archive/

n AX_CFLAGS_WARN_ALL
n AX_APPEND_COMPILE_FLAGS([-Wextra])
n AX_APPEND_COMPILE_FLAGS([-pedantic])

n “Fix” so no warning, even if technically not a problem
n That way, any warning is obviously a new issue

n Turn on run-time warnings too:
n May detect security vulnerabilities
n Improve other tools’ results (fewer false results)
n Often hard to turn on later

n Code not written with warnings in mind may require substantial changes
before it reports no warnings

16

Style checkers / Defect finders /
Quality scanners

n Compare code (usually source) to set of pre-
canned “style” rules or probable defects

n Goal:
n Make it easier to understand/modify code
n Avoid common defects/mistakes, or patterns

likely to lead to them
n Some try to have low FP rate

n Don’t report something unless it’s a defect

17

PMD vs. FindBugs

n Both PMD and FindBugs:
n Focus on “quality” issues, not security
n Open source software, available no cost
n Operate on Java

n PMD
n Works on (Java) source code
n Examples: Violation of naming conventions, lack of curly braces,

misplaced null check, unnecessary constructor, missing break in
switch

n Also provides Cyclomatic complexity
n FindBugs

n Works on (JVM) bytecode
n Examples: equals() method fails on subtypes, clone method may

return null, reference comparison of Boolean values, impossible cast,
32bit int shifted by an amount not in the range of 0-31, a collection
which contains itself, equals method always returns true

n Neither good at finding security issues – not their purpose

18

Security defect text
scanners

n Scan source code using simple grep-like lexer
n Typically “know” about comments and strings
n Look for function calls likely to be problematic

n Examples: RATS, ITS4, Flawfinder (D.A.Wheeler)
n Pros:

n Fast and cheap
n Can process partial code (including un-compilable code)

n Cons:
n Lack of context leads to large FN & FP rates
n Useful primarily for warning of “dangerous” functions

19

Security defect finders

n Read software and create internal model
of software

n Look for patterns likely to lead to
security defects

n Examples
n Proprietary: HP/Fortify, Coverity
n OSS: splint (for C), LAPSE+ (for Java)

20

Analysis approach: Examining
structure / method calls
n Warn about calls to gets():
FunctionCall: function is [name ==
"gets"]

21Source: Brian Chess and Jacob West

Analysis Approach: Data flow
- Taint propagation

n Many tools (static and dynamic) perform “taint
propagation”
n Input from untrusted users (“sources”) considered “tainted”
n Warn/forbid sending tainted data to certain methods and

constructs (“sinks”)
n Some operations (e.g., checking) may “untaint” data

n Static analysis:
n Follow data flow from sources through program
n Determine if tainted data can get to vulnerable “sink”

n Dynamic analysis (e.g., Perl, Ruby):
n Variables have “taint” value set when input from some sources
n Certain operations (sinks) forbid direct use of tainted data

n Counters accidental use of untrusted and unchecked data
n esp. useful on injection (SQL, command) and buffer overflow

22

Taint propagation example

n Source rule:
n Function: getUntrustedInputFromNetwork()
n Postcondition: return value is tainted

n Pass-through rule:
n Function: copyBuffer()
n Postcondition: If arg2 tainted, then arg1

tainted
n Sink rule:

n Function: exec()
n Precondition: Arg1 must not be tainted

23

buffer = getUntrustedInputFromNetwork(); // Source
copyBuffer(newBuffer, buffer); // Pass-through
exec(newBuffer); // Sink

Source: Brian Chess and Jacob West

In real code, taint
propagation typically
flows through many
different methods

Property checkers

n “Prove” that a program has very specific
narrow property

n Typically focuses on very specific temporal
safety, e.g.:
n “Always frees allocated memory”
n “Can never have livelock / deadlock”

n Many strive to be sound (“reports all possible
problems”)

n Examples: GrammaTech, GNATPro Praxis,
Polyspace

24

Knowledge extraction /
program understanding

n Create view of software automatically
for analysis
n Especially useful for large code bases
n Visualizes architecture
n Enables queries, translation to another language

n Examples:
n Hatha Systems’ Knowledge Refinery
n IBM Rational Asset Analyzer (RAA)
n Relativity MicroFocus (COBOL-focused)

25

Source/Byte/Binary code security
scanners/analyzers – some lists

n http://samate.nist.gov/index.php/Tool_
Survey.html
n Click on “Source Code Security Analyzers”,

“Byte Code Scanners”, and “Binary Code
Scanners”

n http://www.dwheeler.com/flawfinder

26

Dynamic analysis

27

Dynamic analysis’ fundamental
issue: Cannot test all inputs

n Given trivial program “add two 64-bit integers”
n Input space = (264) (264) = 2128 possibilities

n Checking “all inputs” not realistic even in this case
n Given 4GHz processor & 5 cycles/input (too fast):

time=2128 inputs * (5 cycles/input) * (1 second/(4GHz cycles))
= 1.35 x 1022 years (13.5 zettayears aka sextillion years)

n Using 1 million 8-core processors doesn’t help:
time=1.7 x 1015 years (petayears aka quadrillion years)

n Real programs have far more complex inputs
n Even a 1% sample impossible in human lifetimes

28

Why dynamic analysis’ weakness is
especially important to security

n Security (and safety) requirements often have
the form “X never happens” (negative
requirement)
n Easier to show there is at least one case where

something happens than to show it never happens
n Continuous systems: Check boundaries

n But digital systems are fundamentally discontinuous
n Dynamic analysis can only be a part of

developing secure software process – but has
some value

29

Functional testing for
security

n Use normal testing approaches, but add tests
for security requirements
n Test both “should happen” and “should not happen”
n Often people forget to test what “should not

happen”
n “Can I read/write without being authorized to do so?”
n “Can I access the system with an invalid certificate?”

n Branch/statement coverage tools may warn
you of untested paths

n As always, automate and rerun

30

Web application scanners

n Attempt to go through the various web forms and links
n Send in attack-like and random data

n Key issues: Input vector (Query string? HTTP body? JSON?
XML?), scan barrier, crawl / input vector extraction, which
vulnerabilities it detects (and how well)

n Often build on “fuzzing” techniques (discussed next)
n Shay Chen reviews many in “The Web Application

Vulnerability Scanners Benchmark”
n Compares effectiveness on “WAVSEP”. See

http://www.sectoolmarket.com and 2014 discussion in
http://sectooladdict.blogspot.com/2014/02/wavsep-web-
application-scanner.html

31

Fuzz testing (“fuzzing”)

n Testing technique that:
n Provides (many!) invalid/random input to inputs
n Monitors program for crashes and other signs of trouble

(failing code assertions, appearance of memory leaks)… not if
the final answer is “correct” (this process is the “oracle”)

n Simplifies “oracle” so can create massive data set
n Do not need source, might not even need executable
n Often quickly finds a number of real defects

n Attackers use it; do not have easy-to-find vulnerabilities
n Can be very useful for security, often finds problems
n Typically diminishing rate of return

32

Fuzz testing history

n Fuzz testing concept from Barton Miller’s
1988 class project Univ. of Wisconsin
n Project created “fuzzer” to test reliability of command-line

Unix programs
n Repeatedly generated random data for them until

crash/hang
n Later expanded for GUIs, network protocols, etc.

n Approach quickly found a number of defects
n Many tools and approach variations created

since
33

Fuzz testing variations: Input

n Test data creation approaches:
n Mutation based: mutate existing samples to create test data
n Generation based: create test data based on model of input

n Including fully random, but that often has poorer coverage
n May try to create “likely security vulnerability” patterns (e.g.

metachars) to increase value
n May concentrate on mostly-valid or mostly-invalid
n Type of input data: File formats, network protocols,

environment variables, API call sequences, database
contents, etc.

n Input selection may be based on other factors, including info
about program (e.g., uncovered program sections)

34

Fuzz testing variations: oracle

n Originally, just “did it crash / hang”?
n Adding program assertions (enabled!) can reveal

more
n Test other “should not happen”

n Ensure files/directories unchanged if shouldn’t be
n Memory leak (e.g., valgrind)
n Invalid memory access, e.g., using AddressSanitizer

(aka ASan) for C/C++/Objective-C to detect buffer
overflows and double-frees

n More intermediate (external) state checking
n Final state “valid” (! = “correct”)

35

Sample fuzz testing tools
(at least in part)
n CERT Basic Fuzzing Framework (BFF)

n Built on “zzuf” which does the input fuzzing
n CERT Failure Observation Engine (FOE)

n From-scratch Windows
n OWASP WebScarab
n Immunity’s SPIKE Proxy
n Wapiti
n IBM Security AppScan
There are a huge number of these!

36

Fuzz testing: Problems

n Fully random often does not test much
n e.g., if input has a checksum, fuzz testing ends up primarily

checking the checksum algorithm
n Fuzz testing only finds “shallow” problems

n Special cases (“if (a == 2) …”) rare in input space
n Sequence of rare-probability events by “random” input will

typically not be covered by testing
n Can modify generators to increase probability… but you have

to know very specific defect pattern before you find defect
n In general, only a small amount of program gets covered

n Once defects found by fuzz testing fixed, fuzz
testing has a quickly diminishing rate of return
n Fuzz testing is still a good idea… but not by itself

37

Hybrid analysis

38

Coverage measures

n Hybrid = Combine static and dynamic analysis
n Historically common hybrid approach: Coverage measures
n “Coverage measures” measure “how well” program has been

tested in dynamic analysis (by some measure)
n Many coverage measures exist

n Two common coverage for dynamic testing:
n Statement coverage: Which (%) program statements

have been executed by at least one test?
n Branch coverage: Which (%) program branch options have

been executed by at least one test?
if (a > 0) { // Has two branches, “true” & “false”
dostuff(); // Statement coverage 100% with a=1

}

n Can then examine what is uncovered (untested)

39

More hybrid approaches

n Concolic testing (“Concolic” = concrete + symbolic)
n Hybrid software verification technique that interleaves concrete

execution (testing on particular inputs) with symbolic execution
n Can be combined with fuzz testing for better test coverage to

detect vulnerabilities
n Sparks, Embleton, Cunningham, Zou 2007 “Automated

Vulnerability Analysis: Leveraging Control Flow for Evolutionary
Input Crafting” http://www.acsac.org/2007/abstracts/22.html
n Extends black box fuzz testing with genetic algorithm
n Uses “dynamic program instrumentation to gather runtime

information about each input’s progress on the control flow graph,
and using this information, we calculate and assign it a ‘fitness’ value.
Inputs which make more runtime progress on the control flow graph
or explore new, previously unexplored regions receive a higher
fitness value. Eventually, the inputs achieving the highest fitness are
‘mated’ (e.g. combined using various operators) to produce a new
generation of inputs…. does not require that source code be
available”

n Hybrid approaches are an active research area

40

http://www.acsac.org/2007/abstracts/22.html

More hybrid approaches (2)

n Dao and Shibayama 2011, “Security sensitive data flow
coverage criterion for automatic security testing of
web applications” (ACM) – proposes new coverage
measure, “security sensitive data flow coverage”:
“This criterion aims to show how well test cases cover security
sensitive data flows. We conducted an experiment of automatic
security testing of real-world web applications to evaluate the
effectiveness of our proposed coverage criterion, which is
intended to guide test case generation. The experiment results
show that security sensitive data flow coverage helps reduce test
cost while keeping the effectiveness of vulnerability detection
high.”

41

Penetration testing (pen testing)

n Pretend to be adversary, try to break in
n Depends on the skills of the pen testers
n Need to set rules-of-engagement (RoE)

n Problem: RoE often unrealistic
n Really a combination of static and dynamic

approaches

42

Operational

43

What about when it’s
fielded?

n Hook into logging systems
n Make sure your logging system is flexible and can hook into

common logging systems
n Support host-based countermeasures

n e.g., address randomization, etc.
n Make sure your implementation works on them
n Microsoft EMET (provide info for it)

n Host-based sandboxing/wrappers
n SELinux (provide starter policy)
n Document inputs and outputs (files, ports)

n Network-based measures
n Firewalls, intrusion detection/prevention systems, NATs
n Don’t assume client IP address you see == IP address client

sees

44
When designing & implementing, prepare for security-related

tools in the operational (fielded) setting

Many ways to organize tool
types

45

NIST SAMATE Tool
Categories (partial)

n Assurance Case Tools
n Safer Languages
n Design/Modeling Verification Tools
n Source Code Security Analyzers, Byte Code Scanners,

Binary Code Scanners
n Web Application Vulnerability Scanners
n Intrusion Detectors
n Network Scanners
n Requirements Verification Tools
n Architecture Design Tools
n Dynamic Analysis Tools
n Web Services Network Scanners
n Database Scanning Tools
n Anti-Spyware Tools
n Tool Integration Frameworks

46
Source: http://samate.nist.gov/index.php/Tool_Survey.html

NAVSEA “Software Security
Assessment Tools Review” (2009)

n Static analysis code scanning
n Source code fault injection
n Dynamic analysis
n Architectural analysis
n Pedigree analysis
n Binary code analysis
n Disassembler analysis
n Binary fault injection
n Fuzzing
n Malicious code detector
n Byte code analysis

47

A fool with a tool…
and adopting tools

48

Fool with a tool is still a fool (1)

n RealNetworks’ RealPlayer/Helix Player vulnerabilities:
n CVE-2005-0455 / iDEFENSE Security Advisory 03.01.05

char tmp[256]; /* Flawfinder: ignore */
strcpy(tmp, pScreenSize); /* Flawfinder: ignore */

n CVE-2005-1766 / iDefense Security Advisory 06.23.05
sprintf(pTmp, /* Flawfinder: ignore */

n CVE-2007-3410 / iDefense Security Advisory 06.26.07
strncpy(buf, pos, len); /* Flawfinder: ignore */

n Kudos to RealNetworks for revealing what happened!!
n Flawfinder: trivial static analysis tool

n Lexical scanner for C code, reports vulnerability patterns
n Comment “Flawfinder: ignore” disables next hit report

49

Fool with a tool is still a fool (2)

n Flawfinder correctly found the vulnerability!!
n Someone then modified code, claiming not vulnerable
n Yet these are obvious – not complex – vulnerabilities
n Likely told “change code until no problems reported”

n Tools are useless unless you understand major
types of vulnerabilities and how to fix them
n Training on tool not the issue (this tool trivial to run)
n Training on developing secure programs is critical

n Must understand tools’ purpose and what to do with results
n e.g., must know what it means and what to do if tool says “potential

SQL injection vulnerability at line X”

50

SWAMP More info: http://continuousassurance.org/

n SWAMP = Software Assurance (SwA) Marketplace
n DHS-sponsored project
n Cloud-based tool analysis of submitted software

n Makes it easy to run many SwA tools against software. Users:
n “Software developers can bring software… to continuously test it

against a suite of software assurance tools. We will provide
interfaces to common source code repositories and develop common
tool reporting formats…”

n “Software assurance tool developers can run tools in our facility to
access a large set of software packages and compare the
performance of their tools against other tools.”

n “Software assurance researchers will have a unique set of
continuous data to analyze…”

n Initial capability focuses on analyzing C, C++, Java using OSS
tools
n Initial tools: FindBugs, PMD, cppcheck, clang, gcc
n Focus: Making it easy to apply the tools – don’t need to install tools,

SWAMP figures out how to apply the tools (e.g., through build
monitoring), and works to integrate tool results

51

http://continuousassurance.org/

Adopting tool(s)

n Culture change required
n More than just another tool
n Tool will not solve anything in isolation

n Define objectives
n Create “gate” – soft at first, later “must pass”

n Train before use
n Esp. software security - types of vulnerabilities, how to fix

them
n Start with pilot – small and friendly group
n Start by focusing on relevant, easily-understood

n Disable detection of most problems at beginning
n Appoint “champion” to advocate
n Later, build on success

52Sources: Chess, West, Chou, Ron Ritchey

