
2

Security principles

• Variations of lists of security principles appear in literature
& on-line (see course website)&

• Security vulnerabilities often exploit violations of these
principles

• Good security solutions or countermeasures follow these
principles

• Some overlap & some tension between principles

• More generally, checklists are useful for security

3

Security principles

• secure the weakest
link

• defence in depth
• principle of least

privilige
• minimise attack

surface
• compartmentalize
• secure defaults

• keep it simple
• fail securely
• promote privacy
• hiding secrets is hard
• use community

resources
• be reluctant to trust
•

4

Security principles

These principles can be applied at many levels, eg.
• in source code of a application
• between applications on a machine
• at OS level
• at network level
• within an organisation
• between organisations
• ...

5

Secure the weakest link

• Spend your efforts on improving the security of the
weakest part of a system, as this is where
attackers will attack

• NB this requires a good risk analysis

6

Secure the weakest link

• educating users may be best investment to
improve security
– eg think of phishing attacks, weak passwords

• web application visible through firewall may be
easier to break than the firewall
– improve web application security, not the

firewall

7

Example: using credit cards on internet

• Internet folklore: don’t use your credit card online, or only
over SSL-encrypted connection; better to fax it;...

• NB threats vs risk:
– threats to credit card numbers include:

• me loosing my wallet
• eavesdropping on the network
• stealing from customer database

– The last poses a bigger risk:
• end-points of SSL connection are the weak points

(Also, the risk to card holder is small.)(

8

 "Using encryption on the Internet is the
equivalent of arranging an armored car to deliver
credit card information from someone living in a
cardboard box to someone living on a park bench."

 -- Gene Spafford

9

Practice defence in depth

• have several layers of security
– two controls are better than one.

• no single point of failure

• A typical violation:
 having a firewall, and only having firewall

– a user bringing in a laptop circumvents firewall
• this is an example of enviromental creep

10

Defence in depth example

• have a firewall
and
• secure web application software
and
• run web application with minimal priviliges

11

Defence in depth example

• use OS access control to restrict access to
sensitive files

and
• encrypt them

– Esp. when files are written to removable media such as
USB sticks (another example of enviromental creep), to
laptops, or PCs which might be disposed off

12

Defence in depth example

 "The only system which is truly secure is one
which is switched off and unplugged, locked in a
titanium-lined safe, buried in a concrete bunker,
and surrounded by nerve gas and very highly paid
armed guards.

 Even then, I wouldn't stake my life on it”

 -- Gene Spafford

13

Defence in depth: counterexample

• on UNIX systems, the password file, /etc/passwd,
which contains hashed passwords, was world
readable.

• better
– hash passwords

 and
– enforce tight access control to the file

14

Sun tarball problem (1993)S

• Every tarball (zip-file) produced on Solaris 2.0 contained
fragments of the password file /etc/password

• How did this happen?
– tar looked up some user info directly prior to producing

tarball:
• password file was loaded in heap memory for this
• this heap memory was then released

– then tar allocated memory for constructing the tarball
• allocated memory was always the memory just

released
• memory not zeroed out on allocation by program or

OS...
• Solution: replacing char *buf (char*)malloc(BUFSIZE)

 by char *buf (char*)calloc(BUFSIZE)(

15

Principle of least privilige

• be stingy with priviliges
– only grant permissions that are really needed
– resource permissions (eg memory limits, CPU priorities) ,

network permissions, file permissions,

• typical violations
– logging in as root/administrator
– device drivers having to run in kernel mode

• important cause of violations: laziness

16

Principle of least privilige

• in organisation
– don’t give everyone access to root passwords
– don’t give everyone administrator rights

• on computer
– run process with minimal set of priviliges

– Eg, don’t run web application as root or
administrator

17

Principle of least privilige

• for Java application
 not the default policy
 grant codeBase "file:${{java.ext.dirs}}/*" {

 permission java.security.AllPermission;

 };

 but minimum required
 grant codeBase "file:./forum/*" {

 permission java.security.FilePermission;

 "/home/forumcontent/*","read/write";

 };

18

Principle of least privilige

• in code
– not public int x;

 but private int x;

– not public void m()p

 but package void m()p

• Expose minimal functionality in interfaces of
objects, classes, packages, applications

19

Principle of least privilige

• NB applying the principle of least privilige in code is tricky &
hard and requires work & discipline.
– this is true just for plp in general, not just in code

• Why?
– compiler complains about private field that should be

public, not the other way around
– compiler complains about missing import, not about

superfluous import.
• Can this be improved ?

– tool support in compilers & IDEs, eg or separate source
code analyzers, eg FindBugs and JAMIT tool for
tightening visibility modifiers

(http://grothoff.org/christian/xtc/jamit)(

20

Compartmentalize

• Principle of least privilige works best if access
control is all or nothing for large chunks –
compartments - of a system

• Motivations:
– simplicity
– containing attacker in case of failure

• Analagy: compartments on a ship
• Counterexample: OS that crashes if an application crashes

21

NB the fundamental conflict between
• principle of least privilege
and
• kiss principle – keep it simple

– plp requires very fine-grained control with expressive
policies

– ... which leads to more complexity
– ... which people then get wrong

• Compartmentalization can provide a solution
 using defence in depth

22

Compartmentalize examples

• Use different machines for different tasks
– eg run web application on a different machine

from employee salary database
• Use different user accounts on one machine for

different tasks
– unfortunately, security breach under one

account may compromise both...
– compartmentalization provided by typical OSs

is poor!
• Partition hard disk and install OS twice

23

Improved compartmentalization

• chroot jail
 restricts access of a process to subset of file

system, ie. changes the root of file system for
that process

 Eg run an application you just downloaded with
 chroot /home/sos/paperino/trial;/tmp

Nice idea, but hard to get working, and hard to get
working correctly.

24

Improved compartmentalization

Examples in operating system world:
• virtual machines

– VMWare
– very popular these days, but mainly for reasons of

convenience & costs, not security

• operating system hypervisors (true microkernels)o
 small, lightweight kernel, which partions hard disk & memory,

to concurrently run several copies of the OS, in different
compartments

25

Virtualisation by virtual machine

• We simulate the
 hardware in an
 OS process

process
A

process
B

OS 1

OS 2

Hardware

Hardware
Simulator

This is solution
proposed
by VMware.com

Similar to Java VM,
except that we simulate
the real hardware,
and don't provide some
abstract VM

26

Virtualisation by hypervisor

• We simulate the hardware below the operation
system, in a so-called hypervisor aka micro-kernel

process
A

process
B

OS 1 OS 2

Hardware

hypervisor

27

Compartmentalize

• in code, aka modularisation,
– using objects, classes, packages, etc.

 Restrict sensitive operations to small modules,
with small interfaces

• so that you can concentrate efforts on
quality of these modules

• so that only these have to be subjected to
code reviews

28

Minimize attack surface

Mimimise
• number of open sockets
• number of services
• number of services running by default
• number of services running with high priviliges
• number of dynamic content webpages
• number of accounts with administrator rights
• number of files & directories with weak access

control
• ...

29

Minimize the attack surface

• in code
– not public int x;

 but private int x;

– not public void m()p

 but package void m()p

 This is applying principle of least privilige, and also
reduces attack surface, from buggy or hostile
code

30

Minimize attack surface in time

Examples
• Automatically log off users after n minutes
• Automatically lock screen after n minutes
• Unplug network connection if you don’t use it
• Switch off computer if you don’t use it

• On smartcards, it’s good practice to zero-out
arrays that contains sensitive information (usually,
decrypted information) as soon as it’s no longer
needed

31

Use secure defaults

• By default,
– security should be switched on
– permissions turned off

• This will ensure that we apply principle of least
privilige

• Counterexample: on bluetooth connection on mobile
phone is by default on, but can be abused

32

Keep it simple (aka economy of mechanism))

• Complexity important cause of security problems
– complexity leads to unforeseen feature

interaction
– complexity leads to incorrect use and insecure

configuration by users and developers

• Note: compartmentalization is a way of keeping
access control simple

• Eg: good practice: choke point – small interface
through which all control flow must pass

33

Fail securely

• Incorrect handling of unexpected errors is a
major cause of security breaches

• Counterexamples:
– fallback to unsafe(r) modes on failure

• sometimes for backward compatibility
• asking user if security settings can be lowered

– crashing on failure, leading to DoS attack
– leaking interesting information for an attacker

• Of course, having exceptions in a programming
language has a big impact

34

Fail securely example

isAdmin = true; // enter Admin mode

try {

 something that may throw SomeException

} catch (SomeException ex) {

 // should we log?

 log.write(ex.toString());

 // how should we proceed?

 isAdmin = false;

 // or should we exit?

}

35

Variants of failing insecurely

• information leakage
– about cause of error, which can be exploited –more on

that later
• ignoring errors

– Easier in a programming language without exceptions!
• eg forgetting to check for -1 return value in C

• misinterpreting errors
• useless errors

– why does strncopy return an error value at all?
• handling wrong exceptions
• handling all exceptions

36

Failing insecurely example

char dest[19]
char *p = strncpy(dest, src,19)
 // strncpy returns dest, like strcpy
if (p) { // everything went fine, use dest or p

 }

• Programmer is careful to check return value of strncopy
• But strncopy will not return NULL on error

• Of course, having exceptions in a programming language has
a big impact

37

Failing insecurely example

Example code in Local System service in Windows

 ImpersonateNamedClient(someUser);

 // become someUser

 DeleteFile(fileName);

 RevertToSelf(); // become Local System

What's wrong here ?
• What happens of ImpersonateNamedClient fails?

38

Failing insecurely example

try {... // (1) Load XML file f from disk
 ... // (2) Use some data from f to get URI
 ... // (3) get X509 certificate
 ... // (4) access URI with certificate
} catch (Exception ex) {

}

What's wrong here ?
– one catch block to handle SecurityException,

XMLException, IOException, FileNotFoundException,
SocketException,

39

Failing insecurely example

try {...

 ...

 } catch (Exception ex) {

 // do nothing

 }

What's possibly/probably wrong here ?
• empty catch block is suspicious...
• overly broad catches is suspicious

40

Failing insecurely example

Security Flaw in OpenSSL and OpenSSH
(CVE CAN-2000-0535)(
• PRNG (Pseudo Random Number Generator) in OpenSSH and

OpenSSL seeded with /dev/random
• But failure to check for the presence of /dev/random
 which did not exist on FreeBSD-Alpha...

41

Fail securely example

When scrubbing user input – ie validating input -
• don’t reject input with illegal words

– eg. webforum input containing <javascript>
• don’t reject input with illegal characters

– eg. input containing characters < > ;
• but only allow input with legal characters

– eg. only input containing 0...9 a...z

So user validation will err on the side of caution

42

Promote privacy

• Privacy of users, but also of systems

• Counterexamples
– > telnet somemachine

 Trying 123.1.2.3
 Connected to somemachine (123.1.2.3)C
 Red Hat Linux release 7.0 (Hedwig)R
 Kernel 2.2.16 on an i686
 login:

– Smartcard chips still do this

45

Blind SQL injection

Suppose
 http://newspaper.com/items.php?id=2
results in SQL injection-prone query
 SELECT title, body FROM items WHERE ID=2

Will we see difference response to URLs below?
 http://newspaper.com/items.php?id=2 AND 1=1
 http://newspaper.com/items.php?id=2 AND 1=2
We can use this to find out things about the database

structure & content
 ../items.php?id=2 AND SUBSTRING(user,1,1) = ‘a’

Blind SQL injection: result to an SQL injection not visible, but
leaks information

46

Blind SQL injection

Even all SQL errors report an identical, standard error page,
without any further info, errors may still leak information

 IF <some condition> SELECT 1 ELSE 1/0

Worse still, response time may still leak information

 .. IF(SUBSTRING(user,1,1) =‘a’,

 BENCHMARK(50000, …), null)..

47

It’s hard to keep secrets

• Don’t rely on security by obscurity
 [Kerckhoffs principle]
• Don’t assume attackers don’t know the application

source code, and can’t reverse-engineer binaries
– Don’t hardcode secrets in code.
– Don’t rely on code obfuscation

• Example
– DVD encryption
– webpages with hidden URLs
– passwords in javascript code – this happens!

48

Use community resources

• Never design your own cryptography
• Never implement your own cryptography

• Don’t repeat known mistakes
 If you’re making an application of kind X using programming

language Y on platform Z and operatins system W, look for
– known threats for application of kind X
– known vulnerabilities in programming language Y and

platform Z, ...
– existing countermeasures

49

Use community resources

Use google, books, webfora, etc. to learn & reuse

• learn about vulnerabilities
– and avoid making the same mistakes

• learn about solutions and countermeasures
– and reuse them

52

Principle of psychological acceptance

• If security mechanism is too cumbersome, users
will switch it off, or find clever ways around it

• User education may improve the situation, but only
up to a point

• How many security pop-ups can we expect the user to cope
with, if any?

53

Don’t mix data & code

This is the cause of many problems, eg
• traditional buffer overflow attacks, which rely on

mixing data and code on the stack
• VB scripts in Office documents

– leads to attacks by hostile .doc or .xls
• javascript in webpages

– leads to XSS (cross site scripting attacks)l
• SQL injection relies on use data (user input!) as

part of SQL query

54

Clearly assign responsibilities

At organizational level:
• eg. make one person responsible for something rather than

two persons – or a whole group.
At coding level:
• make one module/class responsible for input validation,

access control, ...
• for a method
 public void process(String str)p

 is the caller or callee responsible for checking if for instance
 str!=null & !(str.equals(“”)) ?

But still practice defence in depth...

55

Identify your assumptions

• including obvious, implicit assumptions
– these may be sources of vulnerability, and may

change in long run
Examples
• laptops invalidate implicit assumption that computers don’t move

past the company firewall
• assumption that user is a human may cause you to ignore possibility

of brute-force password guessing
• TCP SYN flood attack exploits implicit assumptions in the spec “If

we receive a TCP packet with the SYN flag set, it means the sender
wants to start a dialog with us”

• assumption that new LoginContext() won’t throw an
OutOfMemoryException

• assumption that a Java applet won’t use all CPU time

56

Be reluctant to trust

• Understand and respect the chain of trust

• NB trust is transitive

• NB trust is not a good thing

• NB “trusted” is not the same as “trustworthy”

• Minimize Trusted Computing Base (TCB), ie that
part of the system (software and hardware) that
has to be trusted

57

Ken Thompson (Reflections on trusting trust)(

 Backdoor in UNIX and Trojan in C-compiler
revealed during Turing award lecture
1. backdoor in login.c of UNIX
 if (name == "ken") {don't check password;

 log in as root}

2. code in C compiler to add backdoor when recompiling
login.c

3. code in C compiler to add code (2 & 3!) when
(re)compiling a compiler

58

Be reluctant to trust

• All user input is evil !
– Eg unchecked user input leads to

• buffer overflows
• SQL injection
• XSS on websites

– User input includes cookies, environment variables, ...
 User input should not be trusted, and subjected to

strong input validation checks before being is used
• Don’t trust third-party software

59

Security principles

• secure the weakest
link

• defence in depth
• principle of least

privilige
• minimise attack

surface
• compartementalise
• secure defaults

• keep it simple
• fail securely
• promote privacy
• hiding secrets is hard
• use community

resources
• be reluctant to trust
• ...

