
RACES

How race conditions happen

Requirements for race condition

Two or more processes have access
to the same object
Algorithm used by processes does not
properly enforce an access order
At least one process modifies the
object

Simple Java servlet
import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;
public class Counter extends HttpServlet {

int count = 0;

public void doGet(HttpServletRequest in, HttpServletResponse out)
throws ServletException, IOException {

out.setContentType("text/plain");
Printwriter p = out.getWriter();
count++;

p.println(count + " hits so far!");
}

}

Modification to Java servlet
import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;
public class Counter extends HttpServlet {

int count = 0;

public void doGet(HttpServletRequest in, HttpServletResponse out)
throws ServletException, IOException {

out.setContentType("text/plain");
Printwriter p = out.getWriter();
p.println(++count + " hits so far!");

}

}

Race Conditions
In a pre-emptively multi-tasked
environment, anything can happen in-
between the execution of two statements

Check if something is OK to do
Do it (perhaps the conditions have changed?)

Semaphores and locks are mechanisms that
prevent concurrent access to, or
modification of, an object by different
processes

To fix race conditions
Race condition occurs when a certain
condition assumed true does not hold
Window of vulnerability: interval of time
when violation of assumption leads to
incorrect behavior
Reduce window to zero: make relevant
code atomic
An operation that cannot be interrupted
with regards to an object is called
"atomic"

Java synchronized
The synchronized keyword ensures that
only a single thread will execute a
statement or block at a time

Prevents thread from observing object in
inconsistent state
Enforces appropriate sequencing of state
transitions

The JVM implementation is responsible
for enforcing it
It can have a significant impact on
efficiency

Revised Java servlet
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class Counter extends HttpServlet {

int count = 0;
public synchronized void

doGet(HttpServletRequest in, HttpServletResponse out)
throws ServletException, IOException {

out.setContentType("text/plain");
Printwriter p = out.getWriter();
count++;
p.println(count + " hits so far!");

}
}

Improved Java servlet

public class Counter extends HttpServlet {
int count = 0;
public void doGet(HttpServletRequest in, HttpServletResponse out)

throws ServletException, IOException {
int my_count;
out.setContentType("text/plain");
Printwriter p = out.getWriter();
synchronized(this) {

my_count = ++count;
}
p.println(my_count + " hits so far!");

}
}

Other Example Race Condition
User 1 creates a file with world-
writable permissions
User 1 wants to change the permissions
to exclude others with "chmod 700
filename"
User 2 tries to overwrite the file in-
between
Will user 1 or user 2 succeed?

User 1 should have set the umask correctly!

Database Race Condition

If (condition for field 1)
then do something to field 2

However process 2 changes field 1 in-
between...
Result: invalid combination of values
(e.g., bank account balance)

Example Race Condition
Two processes: red and blue
Red: Check that user 1 has enough
money to pay check #y
Blue: Check that user 1 has enough
money to pay check #x
Red: Pay check #y
Is there really enough money to pay
check #x?

Effects of Race Conditions
Normally:

race conditions show up as periodic errors
frequency of the error will depend upon how likely the
'bad' order is to occur
it is often hard to get race condition errors to repeat

When exploited:
crackers can attempt to force the particular conditions
that will produce a flaw
depending upon the exact form of the flaw, it may be
produced with high probability
most common (mis)use: modify the value of some shared
object

Example: mkdir.
mkdir is actually a fairly complex sequence of
actions. Here are some of the actions
triggered by mkdir dir under an early
implementation for a Unix system:

Superuser creates a directory object dir
Permissions are set to 777.
Superuser does a chown to change the ownership
of the directory to the calling user.
Modify permissions via umask(2) to match the
environment umask value.

Can you spot the problem??

One difficulty ...
From the man pages:

The mkdir command creates specified directories in
mode 777. The directories are then modified by
umask(2), according to how you have set up umask.

Patient crackers can automate a process to
exploit this race condition to obtain ownership
of file. Here is a well-known method:

Find a writable directory
Start a scanning program that will look for creation
of /tmp/junk
Start up mkdir /tmp/junk and use nice to cause
it to run slowly in the background. Move scanner to
foreground.

Flaw continued ...
When the scanner spots the new
directory:

1. Remove the original /tmp/junk
2. Create a link from the secret file you

want to /tmp/junk
Suppose the scanner's link in (2) beat
the mkdir's chown. Now mkdir will
change the ownership of the secret
file to cracker.

Why do these problems
arise?

Problem: there are many of these race
conditions in operating systems. Many occur in
common system utilities.

It is a lot of trouble to identify and then fix them.
Often the fix will cause systems to run slower, since
it is necessary to coordinate access. Most sites do
not have anyone with the time or ability to do so
properly.

The above explains why it is important that all
users of a system be trustworthy.

Yet another example
Using same buffer for plaintext and ciphertext

Load buffer with plaintext
Encrypt buffer
Send buffer contents to recipient

Looks harmless, until in multithreaded application,
last two steps swapped and plaintext is sent
Impossible? Not for Internet Information Server 4
when using SSL (occasional unencrypted packet sent)

www.microsoft.com/technet/security/bulletin/MS99-053.asp
Use two buffers, zeroing out the ciphertext buffer
across calls

2

Another classic source of (security) problems

• race condition aka data race is a common type of bug in
concurrent programs
• basically: two execution threads mess with the same variable

at the same time
• not necessarily a security bug

• Non-atomic check and use aka TOCTOU (Time Of Check,
Time of Use) a closely related type of security flaw

 Problem: some precondition required for an action is
invalidated between the time it is checked and the time the
action is performed

• typically, this precondition is access control condition
• typically, it involves some concurrency

3

Race condition

• Two concurrent execution threads both execute the statement
 x = x+1;
 where x initially has the value 0.
• What is the value of x in the end?
• Answer: x can have the value 2 or 1

• The root cause of the problem is that x = x+1 is not an atomic
operation, but happens in two steps, reading x and assigning the
new value, which may be interleaved in unexpected ways

• Why can this lead to security problems?
• Think of internet banking, and running two simultaneous sessions

with the same bank account… Do try this at home! 

4

Classic example race condition: mkdir on Unix

• mkdir is setuid root, ie. executes as root

• It creates new directory non-atomically, in two steps:
1. creates the directory, with owner is root
2. sets the owner, to whoever invoked mkdir

• Attack: by creating a symbolic link between steps 1 and 2,
attacker can own any file

5

Other classic UNIX race conditions

• lpr
– print utility with option to remove file after printing
– could be used to delete arbitrary files

• but this still happens
– CVE-2003-1073

A race condition in the at command for Solaris 2.6 through 9
allows local users to delete arbitrary files via the -r argument
with .. sequences in the job name, then modifying the directory
structure after at checks permissions to delete the file and
before the deletion actually takes place

 Combination of race condition with failure to check that file names
do not contain ..

6

Example race condition

 const char *filename="/tmp/erik";

 if (access(filename, R_OK)!=0) {

 ... // handle error and exit;

 }

 // file exists and we have access

 int fd open (filename, O_RDONLY);

 ...

 Between calls to access and open the file might be
removed!

7

Race condition & file systems

Signs of trouble:
• Access to files using filenames rather than file handles or

file descriptors
– filenames may point to different files at different

moments in time

• Creating files or directories in publicly accessible places, for
instance /tmp
– especially if these have predictable file names

9

Promising future for data races?

• Trend: more multi-CPU machines
– to keep improving computer power in accordance with

Moore's Law, despite physical contraints
• Hence: more multi-threaded software

– to take advantage of max. available computing power
• Hence: many problems with data races in code

– as programmers cannot cope with concurrency
– writing correct concurrent programs is hard

[Interesting article to read:
 "The free lunch is over :a fundamental turn toward concurrency in

software”, by Herb Sutter]

	TOCTOU.pdf
	Software Security Non-atomic check and use (aka TOCTOU) & race conditions Erik Poll Digital Security group Radboud University Nijmegen
	Another classic source of (security) problems
	Race condition
	Classic example race condition: mkdir on Unix
	Other classic UNIX race conditions
	Example race condition
	Race condition & file systems
	Spot the race condition!
	Promising future for data races?

